40 research outputs found

    Activities of 20 aminoacyl-tRNA synthetases expressed in a reconstituted translation system in Escherichia coli

    Get PDF
    AbstractA significant challenge in the field of in vitro synthetic biology is the construction of a self-reproducing cell-free translation system, which reproduces its components, such as translation proteins, through translation and transcription by itself. As a first step for such construction, in this study we expressed and evaluated the activity of 20 aminoacyl-tRNA synthetases (aaRSs), a major component of a translation system, in a reconstituted translation system (PURE system). We found that 19 aaRS with the exception of phenylalanyl-tRNA synthetase (PheRS) are expressed as soluble proteins and their activities are comparable to those expressed in Escherichia coli . This study provides basic information on the properties of aaRSs expressed in the PURE system, which will be helpful for the future reconstitution of a self-reproducing translation system

    Effects of ribosomes on the kinetics of Qβ replication

    Get PDF
    AbstractBacteriophage Qβ utilizes some host cell translation factors during replication. Previously, we constructed a kinetic model that explains replication of long RNA molecules by Qβ replicase. Here, we expanded the previous kinetic model to include the effects of ribosome concentration on RNA replication. The expanded model quantitatively explained single- and double-strand formation kinetics during replication with various ribosome concentrations for two artificial long RNAs. This expanded model and the knowledge obtained in this study provide useful frameworks to understand the precise replication mechanism of Qβ replicase with ribosomes and to design amplifiable RNA genomes in translation-coupling systems

    Translation activity of chimeric ribosomes composed of Escherichia coli and Bacillus subtilis or Geobacillus stearothermophilus subunits

    No full text
    Ribosome composition, consisting of rRNA and ribosomal proteins, is highly conserved among a broad range of organisms. However, biochemical studies focusing on ribosomal subunit exchangeability between organisms remain limited. In this study, we show that chimeric ribosomes, composed of Escherichia coli and Bacillus subtilis or E. coli and Geobacillus stearothermophilus subunits, are active for β-galactosidase translation in a highly purified E. coli translation system. Activities of the chimeric ribosomes showed only a modest decrease when using E. coli 30 S subunits, indicating functional conservation of the 50 S subunit between these bacterial species

    Primitive Compartmentalization for the Sustainable Replication of Genetic Molecules

    No full text
    Sustainable replication and evolution of genetic molecules such as RNA are likely requisites for the emergence of life; however, these processes are easily affected by the appearance of parasitic molecules that replicate by relying on the function of other molecules, while not contributing to their replication. A possible mechanism to repress parasite amplification is compartmentalization that segregates parasitic molecules and limits their access to functional genetic molecules. Although extent cells encapsulate genomes within lipid-based membranes, more primitive materials or simple geological processes could have provided compartmentalization on early Earth. In this review, we summarize the current understanding of the types and roles of primitive compartmentalization regarding sustainable replication of genetic molecules, especially from the perspective of the prevention of parasite replication. In addition, we also describe the ability of several environments to selectively accumulate longer genetic molecules, which could also have helped select functional genetic molecules rather than fast-replicating short parasitic molecules

    Liposome fragment-mediated introduction of multiple plasmids into Bacillus subtilis

    No full text
    Transformation of microorganisms by plasmid introduction is one of the central techniques in modern biotechnology. However, applicable transformation methods for simultaneous introduction of multiple plasmids are still limiting. Here, we reported a liposome-mediated method that efficiently introduces multiple plasmids into B. subtilis. In this method, liposomes containing three kinds of plasmids were mixed with B. subtilis protoplasts in the presence of 36% polyethylene glycol (PEG), and the resultant protoplasts were grown in cell wall-regeneration media. We found that the rates of introduction of multiple plasmids were significantly increased in the presence of liposomes. We also found that an intact liposome structure was not required for introduction, and the presence of phosphatidylglycerol (PG) was important for efficient introduction of multiple plasmids. Therefore, the liposome- or liposome fragment-mediated transformation method reported here can advance studies utilizing multiple plasmids. Keywords: Bacillus subtilis, Liposome, Transformation, Multiple plasmids, Protoplast, Polyethyleneglyco

    Sustainability of a Compartmentalized Host-Parasite Replicator System under Periodic Washout-Mixing Cycles

    No full text
    The emergence and dominance of parasitic replicators are among the major hurdles for the proliferation of primitive replicators. Compartmentalization of replicators is proposed to relieve the parasite dominance; however, it remains unclear under what conditions simple compartmentalization uncoupled with internal reaction secures the long-term survival of a population of primitive replicators against incessant parasite emergence. Here, we investigate the sustainability of a compartmentalized host-parasite replicator (CHPR) system undergoing periodic washout-mixing cycles, by constructing a mathematical model and performing extensive simulations. We describe sustainable landscapes of the CHPR system in the parameter space and elucidate the mechanism of phase transitions between sustainable and extinct regions. Our findings revealed that a large population size of compartments, a high mixing intensity, and a modest amount of nutrients are important factors for the robust survival of replicators. We also found two distinctive sustainable phases with different mixing intensities. These results suggest that a population of simple host–parasite replicators assumed before the origin of life can be sustained by a simple compartmentalization with periodic washout-mixing processes

    Constructive Approaches for Understanding the Origin of Self-Replication and Evolution

    No full text
    The mystery of the origin of life can be divided into two parts. The first part is the origin of biomolecules: under what physicochemical conditions did biomolecules such as amino acids, nucleotides, and their polymers arise? The second part of the mystery is the origin of life-specific functions such as the replication of genetic information, the reproduction of cellular structures, metabolism, and evolution. These functions require the coordination of many different kinds of biological molecules. A direct strategy to approach the second part of the mystery is the constructive approach, in which life-specific functions are recreated in a test tube from specific biological molecules. Using this approach, we are able to employ design principles to reproduce life-specific functions, and the knowledge gained through the reproduction process provides clues as to their origins. In this mini-review, we introduce recent insights gained using this approach, and propose important future directions for advancing our understanding of the origins of life

    Emergence of linkage between cooperative RNA replicators encoding replication and metabolic enzymes through experimental evolution.

    No full text
    The integration of individually replicating genes into a primitive chromosome is a key evolutionary transition in the development of life, allowing the simultaneous inheritance of genes. However, how this transition occurred is unclear because the extended size of primitive chromosomes replicate slower than unlinked genes. Theoretical studies have suggested that a primitive chromosome can evolve in the presence of cell-like compartments, as the physical linkage prevents the stochastic loss of essential genes upon division, but experimental support for this is lacking. Here, we demonstrate the evolution of a chromosome-like RNA from two cooperative RNA replicators encoding replication and metabolic enzymes. Through their long-term replication in cell-like compartments, linked RNAs emerged with the two cooperative RNAs connected end-to-end. The linked RNAs had different mutation patterns than the two unlinked RNAs, suggesting that they were maintained as partially distinct lineages in the population. Our results provide experimental evidence supporting the plausibility of the evolution of a primitive chromosome from unlinked gene fragments, an important step in the emergence of complex biological systems
    corecore