70 research outputs found

    Neurofeedback Using Real-Time Near-Infrared Spectroscopy Enhances Motor Imagery Related Cortical Activation

    Get PDF
    Accumulating evidence indicates that motor imagery and motor execution share common neural networks. Accordingly, mental practices in the form of motor imagery have been implemented in rehabilitation regimes of stroke patients with favorable results. Because direct monitoring of motor imagery is difficult, feedback of cortical activities related to motor imagery (neurofeedback) could help to enhance efficacy of mental practice with motor imagery. To determine the feasibility and efficacy of a real-time neurofeedback system mediated by near-infrared spectroscopy (NIRS), two separate experiments were performed. Experiment 1 was used in five subjects to evaluate whether real-time cortical oxygenated hemoglobin signal feedback during a motor execution task correlated with reference hemoglobin signals computed off-line. Results demonstrated that the NIRS-mediated neurofeedback system reliably detected oxygenated hemoglobin signal changes in real-time. In Experiment 2, 21 subjects performed motor imagery of finger movements with feedback from relevant cortical signals and irrelevant sham signals. Real neurofeedback induced significantly greater activation of the contralateral premotor cortex and greater self-assessment scores for kinesthetic motor imagery compared with sham feedback. These findings suggested the feasibility and potential effectiveness of a NIRS-mediated real-time neurofeedback system on performance of kinesthetic motor imagery. However, these results warrant further clinical trials to determine whether this system could enhance the effects of mental practice in stroke patients

    Analysis of optical nonlinearity by defect states in one-dimensional photonic crystals

    No full text
    Enhancement of optical nonlinearity in one-dimensional photonic-crystal structures with a defect is considered theoretically. It is shown that a large enhancement can be obtained for absorption saturation and degenerate four-wave mixing efficiency as a result of large optical field amplitude of the localized photonic-defect mode at the defect layer. The figure of merit of the use of the photonic-crystal structure is derived especially for systems in which the concentration of the nonlinear optical material can be arbitrarily adjusted. Optical bistability is also predicted for optically dense samples. They can be applied in real photonic devices because of their simple structure and the large enhancement obtained

    Neuroimaging of Movement Disorders

    No full text
    XVIII, 290 p. 85 illus., 53 illus. in color.onlin
    • …
    corecore