19 research outputs found

    Flexible Bench-Scale Recirculating Flow CPC Photoreactor for Solar Photocatalytic Degradation of Methylene Blue Using Removable TiO 2

    Get PDF
    TiO2 immobilized on polyethylene (PET) nonwoven sheet was used in the solar photocatalytic degradation of methylene blue (MB). TiO2 Evonik Aeroxide P25 was used in this study. The amount of loaded TiO2 on PET was approximately 24%. Immobilization of TiO2 on PET was conducted by dip coating process followed by exposing to mild heat and pressure. TiO2/PET sheets were wrapped on removable Teflon rods inside home-made bench-scale recirculating flow Compound Parabolic Concentrator (CPC) photoreactor prototype (platform 0.7 × 0.2 × 0.4 m3). CPC photoreactor is made up of seven low iron borosilicate glass tubes connected in series. CPC reflectors are made of stainless steel 304. The prototype was mounted on a platform tilted at 30°N local latitude in Cairo. A centrifugal pump was used to circulate water containing methylene blue (MB) dye inside the glass tubes. Efficient photocatalytic degradation of MB using TiO2/PET was achieved upon the exposure to direct sunlight. Chemical oxygen demand (COD) analyses reveal the complete mineralization of MB. Durability of TiO2/PET composite was also tested under sunlight irradiation. Results indicate only 6% reduction in the amount of TiO2 after seven cycles. No significant change was observed for the physicochemical characteristics of TiO2/PET after the successive irradiation processes

    Novel Blend for Producing Porous Chitosan-Based Films Suitable for Biomedical Applications

    No full text
    In this work, a chitosan–gelatin–ferulic acid blend was used in different ratios for preparing novel films that can be used in biomedical applications. Both acetic and formic acid were tested as solvents for the chitosan–gelatin–ferulic acid blend. Glycerol was tested as a plasticizer. The thickness, mechanical strength, static water contact angle and water uptake of the prepared films were determined. Also, the prepared films were characterized using different analysis techniques such as Fourier transform infrared spectroscopy (FT-IR) analysis, X-ray diffraction (XRD), thermal gravimetric analysis (TGA), differential scanning calorimetry (DSC) and scanning electron microscopy (SEM). Acetic acid produced continuous compact surfaces that are not recommended for testing in biomedical applications. The plasticized chitosan–gelatin–ferulic acid blend, using formic acid solvent, produced novel hexagonal porous films with a pore size of around 10–14 µm. This blend is recommended for preparing films (scaffolds) for testing in biomedical applications as it has the advantage of a decreased thickness

    Novel Magnetic Mixed Cellulose Acetate Matrix Membranes with Oxygen-Enrichment Potential

    No full text
    This work presents novel magnetic mixed cellulose-based matrix membranes that combine the advantages of a low-cost common polymer matrix, such as cellulose acetate (CA), and a low-cost magnetic filler. Moreover, the presented magnetic mixed CA matrix membranes were fabricated and used without applying an external magnetic field during either the membrane casting or the separating process. Poly(methylmethacrylate) and lithium chloride were used in order to improve the mechanical properties and porosity of the fabricated membranes. The iron–nickel magnetic alloys used were prepared through a simple chemical reduction method with unique morphologies (Fe10Ni90—starfish-like and Fe20Ni80—necklace-like). The novel magnetic mixed CA matrix membranes fabricated were characterized using different analysis techniques, including SEM, EDX, XRD, TGA, and FTIR-ATR analyses. Furthermore, the static water contact angle, membrane thickness, surface roughness, tensile strength, and membrane porosity (using ethanol and water) were determined. In addition, vibrating sample magnetometer (VSM) analysis was conducted and the oxygen transition rate (OTR) was studied. The magnetic mixed CA matrix membrane containing starfish-like Fe10Ni90 alloy was characterized by high coercivity (109 Oe) and an efficient 1.271 × 10−5 cm3/(m2·s) OTR compared to the blank CA membrane with 19.8 Oe coercivity and no OTR. The effects of the polymeric matrix composition, viscosity, and compatibility with the alloys/fillers used on the structure and performance of the fabricated mixed CA matrix membranes compared to the previously used poly(ethersufone) polymeric matrix are discussed and highlighted. The novel magnetic mixed CA matrix membranes presented have good potential for use in the oxygen-enrichment process

    Preparation and Characterization of a Novel Poly(vinylidene fluoride-co-hexafluoropropylene)/Poly(ethersulfone) Blend Membrane Fabricated Using an Innovative Method of Mixing Electrospinning and Phase Inversion

    No full text
    In this work, a novel polymeric membrane was innovated in terms of composition and preparation techniques. A blend of poly(vinylidene fluoride-co-hexafluoropropylene) (PcH) and poly(ethersulfone) (PES) (18 wt.% total polymer concentration) was prepared using a N-methylpyrrolidone (NMP) and N, N-Dimethylformamide (DMF) solvents mixture, while Lithium chloride (0.05–0.5 wt.%) was used as an additive. The electrospinning and phase inversion techniques were used together to obtain a novel membrane structure. The prepared membranes were characterized using scanning electron microscope imaging, energy dispersive X-Ray, differential scanning calorimeter, thermogravimetric analysis, and Fourier transfer infrared spectroscopy-attenuated total reflectance analyses. Moreover, the static water contact angle, membrane thickness, porosity, surface roughness as well as water vapor permeability were determined. ImageJ software was used to estimate the average fiber diameter. Additionally, the effect of the change of PcH concentration and coagulation bath temperature on the properties of the fabricated membrane was studied. The novel developed membrane has shown a good efficiency in terms of properties and features, as a membrane suitable for membrane distillation (MD); a high porosity (84.4% ± 0.6), hydrophobic surface (136.39° ± 3.1 static water contact angle), and a water vapor permeability of around 4.37 × 10−5 g·m/m2·day·Pa were obtained. The prepared membrane can be compared to the MD membranes commercially available in terms of properties and economic value

    Dye removal membrane from electrospun nanofibers of blended polybutylenesuccinate and sulphonated expanded polystyrene waste

    No full text
    Abstract Polystyrene (PS) is a thermoplastic polymer used in food packaging and the manufacture of trays and cups, among other applications. In this work, the preparation of a membrane by electrospinning blended sulphonated expanded PS waste and polybutylenesuccinate (PBS) is described. The fiber quality is controlled by selecting the right polymers’ ratios and solvents. Investigation of the structure of the produced membranes by Fourier transform infrared spectroscopy-attenuated total reflectance confirmed the successful sulphonation of expanded PS and the appearance of characteristic (PBS) bands in the prepared blends. Morphology study of the electrospun membranes using a scanning electron microscope revealed that the quality of the fibers is improved significantly by increasing the amount of PBS in the blend solution. Moreover, continuous and more homogenous fibers are produced by increasing the ratio of PBS to 2%. The efficiency of the prepared membranes in dye removal was tested using methylene blue. The effects of different parameters such as, pH, contact time, temperature, and dye concentration have been studied. Also, kinetic and adsorption isotherm models as well as the durability of the prepared membranes were investigated. The membrane prepared from PSS/1% PBS demonstrated the highest dye uptake (846 mol) with good regeneration efficiency. The adsorption process was found to be endothermic and fits the Freundlich isotherm and pseudo-second-order kinetic model. The values of activation energy for the adsorption process are 36.98, 30.70, and 43.40 kJ/mol over PSS, PSS/1% PBS and PSS/2% PBS, respectively

    Protein-Repellence PES Membranes Using Bio-grafting of Ortho-aminophenol

    No full text
    Surface modification becomes an effective tool for improvement of both flux and selectivity of membrane by reducing the adsorption of the components of the fluid used onto its surface. A successful green modification of poly(ethersulfone) (PES) membranes using ortho-aminophenol (2-AP) modifier and laccase enzyme biocatalyst under very flexible conditions is presented in this paper. The modified PES membranes were evaluated using many techniques including total color change, pure water flux, and protein repellence that were related to the gravimetric grafting yield. In addition, static water contact angle on laminated PES layers were determined. Blank and modified commercial membranes (surface and cross-section) and laminated PES layers (surface) were imaged by scanning electron microscope (SEM) and scanning probe microscope (SPM) to illustrate the formed modifying poly(2-aminophenol) layer(s). This green modification resulted in an improvement of both membrane flux and protein repellence, up to 15.4% and 81.27%, respectively, relative to the blank membrane

    Synthesis of Urchin-Shaped Gold Nanoparticles Utilizing Green Reducing and Capping Agents at Different Preparation Conditions: An In Vitro Study

    No full text
    Employing environmentally friendly reducing and capping materials to synthesize gold nanoparticles is an exciting research point. However, the used materials usually need a long reduction time that can take days. In this work, the instantaneous production of small-sized (less than 20 nm) gold nanoparticles is investigated using ascorbic acid, gelatin, and a mixture of the two agents at different preparation conditions (at room temperature; 20 ± 3 °C and near boiling temperature; 95 ± 3 °C). Particle size analysis, as well as transmission electron microscopy, were used to assess the produced particles’ physical characteristics. The structural changes and optical characteristics of the nanoparticles were monitored using UV–visible spectroscopy. Fourier Transform Infrared spectroscopy (FTIR) was used to establish the presence of a gelatin coating over the gold nanoparticles. The morphology of the produced nanoparticles at 95 ± 3 °C was spherical with a size ranging from 8–18 nm, whereas urchin-shaped nanoparticles ranging from 24–100 nm were formed at 20 ± 3 °C reaction temperature. The presence of hydroxyl and amine groups associated with the gelatin was confirmed using FTIR. This could be a step for wider usage of green synthesized nanogold particles in several applications

    Iron-Nickel Alloy with Starfish-like Shape and Its Unique Magnetic Properties: Effect of Reaction Volume and Metal Concentration on the Synthesized Alloy

    No full text
    Iron-nickel alloy is an example of bimetallic nanostructures magnetic alloy, which receives intensive and significant attention in recent years due to its desirable superior ferromagnetic and mechanical characteristics. In this work, a unique starfish-like shape of an iron-nickel alloy with unique magnetic properties was presented using a simple, effective, high purity, and low-cost chemical reduction. There is no report on the synthesis of such novel shape without complex precursors and/or surfactants that increase production costs and introduce impurities, so far. The synthesis of five magnetic iron-nickel alloys with varying iron to nickel molar ratios (10–50% Fe) was undertaken by simultaneously reducing Fe(II) and Ni(II) solution using hydrazine hydrate as a reducing agent in strong alkaline media for 15 min at 95–98 °C. The effect of reaction volume and total metal concentration on the properties of the synthesized alloys was studied. Alloy morphology, chemical composition, crystal structure, thermal stability, and magnetic properties of synthesized iron-nickel alloys were characterized by means of SEM, TEM, EDX, XRD, DSC and VSM. ImageJ software was used to calculate the size of the synthesized alloys. A deviation from Vegard’s law was recorded for iron molar ration higher than 30%., in which superstructure phase of FeNi3 was formed and the presence of defects in it, as well as the dimensional effects of nanocrystals. The saturation magnetization (Ms), coercivity (Hc), retentivity (Mr), and squareness are strongly affected by the molar ratio of iron and nickel and reaction volume as well as the total metal concentration

    Enzymatic Modification of Polyethersulfone Membranes

    No full text
    Enzymatic modification of polyethersulfone (PES) membranes has been found not only feasible, but also an environmentally attractive way to vary surface properties systematically. In this paper, we summarize the effect of modification layers on protein adsorption and bacterial adhesion on PES membranes and surfaces. The enzyme laccase was used to covalently bind (poly)phenolic acids to the membrane, and compared to other membrane modification methods, this method is very mild and did not influence the mechanical strength negatively. Depending on the conditions used during modification, the modification layers were capable of influencing interactions with typical fouling species, such as protein, and to influence attachment of microorganisms. We also show that the modification method can be successfully applied to hollow fiber membranes; and depending on the pore size of the base membrane, proteins were partially rejected by the membrane. In conclusion, we have shown that enzymatic membrane modification is a versatile and economically attractive method that can be used to influence various interactions that normally lead to surface contamination, pore blocking, and considerable flux loss in membranes
    corecore