741 research outputs found
Endothelial cells decode VEGF-mediated Ca2+ signaling patterns to produce distinct functional responses
A single extracellular stimulus can promote diverse behaviors among isogenic cells by differentially regulated signaling networks. We examined Ca2+ signaling in response to VEGF (vascular endothelial growth factor), a growth factor that can stimulate different behaviors in endothelial cells. We found that altering the amount of VEGF signaling in endothelial cells by stimulating them with different VEGF concentrations triggered distinct and mutually exclusive dynamic Ca2+ signaling responses that correlated with different cellular behaviors. These behaviors were cell proliferation involving the transcription factor NFAT (nuclear factor of activated T cells) and cell migration involving MLCK (myosin light chain kinase). Further analysis suggested that this signal decoding was robust to the noisy nature of the signal input. Using probabilistic modeling, we captured both the stochastic and deterministic aspects of Ca2+ signal decoding and accurately predicted cell responses in VEGF gradients, which we used to simulate different amounts of VEGF signaling. Ca2+ signaling patterns associated with proliferation and migration were detected during angiogenesis in developing zebrafish
Measuring individual overpotentials in an operating solid-oxide electrochemical cell
We use photo-electrons as a non-contact probe to measure local electrical
potentials in a solid-oxide electrochemical cell. We characterize the cell in
operando at near-ambient pressure using spatially-resolved X-ray photoemission
spectroscopy. The overpotentials at the interfaces between the Ni and Pt
electrodes and the yttria-stabilized zirconia (YSZ) electrolyte are directly
measured. The method is validated using electrochemical impedance spectroscopy.
Using the overpotentials, which characterize the cell's inefficiencies, we
compare without ambiguity the electro-catalytic efficiencies of Ni and Pt,
finding that on Ni H_2O splitting proceeds more rapidly than H2 oxidation,
while on Pt, H2 oxidation proceeds more rapidly than H2O splitting.Comment: corrected; Phys. Chem. Chem. Phys., 201
Genetic divergence among advanced lines of groundnut (Arachis hypogaea L.) under agro climatic condition of North East Hill (NEH) region
The introduction of groundnut germplasm in North East Hill (NEH) region of
India is essential to enrich genetic resources for crop improvement. The soil
under NEH region is characterized.............
Evaluation of Phage Display Discovered Peptides as Ligands for Prostate-Specific Membrane Antigen (PSMA)
The aim of this study was to identify potential ligands of PSMA suitable for further development as novel PSMA-targeted peptides using phage display technology. The human PSMA protein was immobilized as a target followed by incubation with a 15-mer phage display random peptide library. After one round of prescreening and two rounds of screening, high-stringency screening at the third round of panning was performed to identify the highest affinity binders. Phages which had a specific binding activity to PSMA in human prostate cancer cells were isolated and the DNA corresponding to the 15-mers were sequenced to provide three consensus sequences: GDHSPFT, SHFSVGS and EVPRLSLLAVFL as well as other sequences that did not display consensus. Two of the peptide sequences deduced from DNA sequencing of binding phages, SHSFSVGSGDHSPFT and GRFLTGGTGRLLRIS were labeled with 5-carboxyfluorescein and shown to bind and co-internalize with PSMA on human prostate cancer cells by fluorescence microscopy. The high stringency requirements yielded peptides with affinities KD∼1 μM or greater which are suitable starting points for affinity maturation. While these values were less than anticipated, the high stringency did yield peptide sequences that apparently bound to different surfaces on PSMA. These peptide sequences could be the basis for further development of peptides for prostate cancer tumor imaging and therapy. © 2013 Shen et al
The impact of predation by marine mammals on Patagonian toothfish longline fisheries
Predatory interaction of marine mammals with longline fisheries is observed globally, leading to partial or complete loss of the catch and in some parts of the world to considerable financial loss. Depredation can also create additional unrecorded fishing mortality of a stock and has the potential to introduce bias to stock assessments. Here we aim to characterise depredation in the Patagonian toothfish (Dissostichus eleginoides) fishery around South Georgia focusing on the spatio-temporal component of these interactions. Antarctic fur seals (Arctocephalus gazella), sperm whales (Physeter macrocephalus), and orcas (Orcinus orca) frequently feed on fish hooked on longlines around South Georgia. A third of longlines encounter sperm whales, but loss of catch due to sperm whales is insignificant when compared to that due to orcas, which interact with only 5% of longlines but can take more than half of the catch in some cases. Orca depredation around South Georgia is spatially limited and focused in areas of putative migration routes, and the impact is compounded as a result of the fishery also concentrating in those areas at those times. Understanding the seasonal behaviour of orcas and the spatial and temporal distribution of “depredation hot spots” can reduce marine mammal interactions, will improve assessment and management of the stock and contribute to increased operational efficiency of the fishery. Such information is valuable in the effort to resolve the human-mammal conflict for resources
High speed railway ground dynamics: a multi-model analysis
High speed railway track and earthwork structures experience varied levels of displacement amplification depending upon train speed. Protecting against amplified track deflections is challenging due to the complexity of deep wave propagation within both the track and supporting soil structures. Therefore it is challenging to derive design guidelines that encompass the full range of influential variables. As a solution, this paper uses a novel multi-model framework where 4 complimentary modelling strategies are combined, and thus able to generate new insights into railway ground dynamics and ‘critical velocity’. The four types of model are: 1) analytical, 2) hybrid analytical-numerical, 3) 2.5D numerical, 4) 3D numerical. They are used to explore subgrade layering, track type, train type, soil non-linearity, shakedown and ground improvement. The findings provide new insights into railway track-ground geodynamics and are useful when considering the design or upgrade of railroad lines
Recommended from our members
Quantitative plant proteomics using hydroponic isotope labeling of entire plants (HILEP)
- …