22 research outputs found
Comparative and Cumulative Energetic Costs of Odontocete Responses to Anthropogenic Disturbance
Odontocetes respond to vessels and anthropogenic noise by modifying vocal behavior, surface active behaviors, dive patterns, swim speed, direction of travel, and activity budgets. Exposure scenarios and behavioral responses vary across odontocetes. A literature review was conducted to determine relevant sources of disturbance and associated behavioral responses for several odontocete species (bottlenose dolphin, killer whale, harbor porpoise, and beaked whales). The energetic costs of species-specific responses to anthropogenic disturbance were then estimated. The energetic impact varies across species and scenarios as well as by behavioral responses. Overall, the cumulative energetic cost of ephemeral behavioral responses (e.g., performing surface active behaviors, modifying acoustic signals) and modifying swim speeds and activity budgets likely increases daily energy expenditure by ≤4%. In contrast, the reduction in foraging activity in the presence of vessels and/or exposure to sonar has the potential to significantly reduce individuals’ daily energy acquisition. Indeed, across all odontocete species, decreased energy acquisition as a result of reduced foraging undoubtedly has a larger impact on individuals than the increased energy expenditure associated with behavioral modification. This work provides a powerful tool to investigate the biological significance of multiple behavioral responses that are likely to occur in response to anthropogenic disturbance
Competing Conservation Objectives for Predators and Prey: Estimating Killer Whale Prey Requirements for Chinook Salmon
Ecosystem-based management (EBM) of marine resources attempts to conserve interacting species. In contrast to single-species fisheries management, EBM aims to identify and resolve conflicting objectives for different species. Such a conflict may be emerging in the northeastern Pacific for southern resident killer whales (Orcinus orca) and their primary prey, Chinook salmon (Oncorhynchus tshawytscha). Both species have at-risk conservation status and transboundary (Canada–US) ranges. We modeled individual killer whale prey requirements from feeding and growth records of captive killer whales and morphometric data from historic live-capture fishery and whaling records worldwide. The models, combined with caloric value of salmon, and demographic and diet data for wild killer whales, allow us to predict salmon quantities needed to maintain and recover this killer whale population, which numbered 87 individuals in 2009. Our analyses provide new information on cost of lactation and new parameter estimates for other killer whale populations globally. Prey requirements of southern resident killer whales are difficult to reconcile with fisheries and conservation objectives for Chinook salmon, because the number of fish required is large relative to annual returns and fishery catches. For instance, a U.S. recovery goal (2.3% annual population growth of killer whales over 28 years) implies a 75% increase in energetic requirements. Reducing salmon fisheries may serve as a temporary mitigation measure to allow time for management actions to improve salmon productivity to take effect. As ecosystem-based fishery management becomes more prevalent, trade-offs between conservation objectives for predators and prey will become increasingly necessary. Our approach offers scenarios to compare relative influence of various sources of uncertainty on the resulting consumption estimates to prioritise future research efforts, and a general approach for assessing the extent of conflict between conservation objectives for threatened or protected wildlife where the interaction between affected species can be quantified
Habitat associations of marine predators in the northern California Current during the low productivity downwelling season
IntroductionEastern Boundary Upwelling Systems are some of the most productive marine ecosystems in the world. Little is known about habitat associations and spatial distributions of marine predators during seasonal periods of low productivity because there are few at-sea surveys during this period. During low productivity or prey scarcity, predators consuming similar prey in the same time and space may compete for limited resources, or they may avoid competition by exploiting different habitats or occupying separate spaces (i.e. niche partitioning). In this study, we examined habitat associations and niche partitioning of marine predators during the low-productivity winter downwelling season of the northern California Current Ecosystem (CCE). MethodsSeabird and marine mammal counts were continuously collected during systematic at-sea surveys during February–March/April in the northern California Current across four years (2006, 2008, 2009, and 2012). We examined seabird and marine mammal distributions in relation to seven habitat characteristics [i.e., sea surface temperature (°C), salinity, depth (m), seafloor slope (%), distance from shore (km), and distance from the 100 m and 200 m isobaths (km)]. We used a non-parametric multivariate analysis [i.e. canonical correspondence analysis (CCA)] to quantify species’ habitat associations and directional distribution ellipses to explore overlap in species core winter habitat.ResultsResults show 49 seabird and ten marine mammal species inhabit the CCE during this low productivity period, including endangered southern resident killer whales (Orcinus orca). Seabirds and marine mammals exhibited significant but low overlap in habitat associations (i.e. weak niche partitioning) and similar habitat associations to summer studies. DiscussionWe also found that some species with similar foraging strategies showed asymmetrical spatial range overlap (i.e. common murre (Uria aalge) and parakeet auklet (Aethia psittacula)), which may mean that expected increased competition due to climate change can negatively affect some species more than others. Given that climate change is leading to increased frequencies, intensities, and durations of marine heat waves during winter months, addressing the winter ecology knowledge gap will be important to understanding how climate change is going to affect species that reside in or migrate through the northern California Current during the low productivity downwelling season
Key questions in marine mammal bioenergetics
This work was funded by the Marine Mammal Commission (MMC19-173). The Office of Naval Research funded the bioenergetic workshop (N000142012392) that provided support for this work.Bioenergetic approaches are increasingly used to understand how marine mammal populations could be affected by a changing and disturbed aquatic environment. There remain considerable gaps in our knowledge of marine mammal bioenergetics, which hinder the application of bioenergetic studies to inform policy decisions. We conducted a priority-setting exercise to identify high-priority unanswered questions in marine mammal bioenergetics, with an emphasis on questions relevant to conservation and management. Electronic communication and a virtual workshop were used to solicit and collate potential research questions from the marine mammal bioenergetic community. From a final list of 39 questions, 11 were identified as ‘key’ questions because they received votes from at least 50% of survey participants. Key questions included those related to energy intake (prey landscapes, exposure to human activities) and expenditure (field metabolic rate, exposure to human activities, lactation, time-activity budgets), energy allocation priorities, metrics of body condition and relationships with survival and reproductive success and extrapolation of data from one species to another. Existing tools to address key questions include labelled water, animal-borne sensors, mark-resight data from long-term research programs, environmental DNA and unmanned vehicles. Further validation of existing approaches and development of new methodologies are needed to comprehensively address some key questions, particularly for cetaceans. The identification of these key questions can provide a guiding framework to set research priorities, which ultimately may yield more accurate information to inform policies and better conserve marine mammal populations.Publisher PDFPeer reviewe
Recommended from our members
Estimates of Chinook salmon consumption in Washington State inland waters by four marine mammal predators from 1970 to 2015
Conflicts can arise when the recovery of one protected species limits the recovery of another through competition or predation. The recovery of many marine mammal populations on the west coast of the United States has been viewed as a success; however, within Puget Sound in Washington State, the increased abundance of three protected pinniped species may be adversely affecting the recovery of threatened Chinook salmon (Oncorhynchus tshawytscha) and endangered killer whales (Orcinus orca) within the region. Between 1970 and 2015, we estimate that the annual biomass of Chinook salmon consumed by pinnipeds has increased from 68 to 625 metric tons. Converting juvenile Chinook salmon into adult equivalents, we found that by 2015, pinnipeds consumed double that of resident killer whales and six times greater than the combined commercial and recreational catches. We demonstrate the importance of interspecific interactions when evaluating species recovery. As more protected species respond positively to recovery efforts, managers should attempt to evaluate tradeoffs between these recovery efforts and the unintended ecosystem consequences of predation and competition on other protected species
Competing Tradeoff between Increasing Marine Mammal Predation and Fisheries Harvest of Chinook Salmon
Many marine mammal predators, particularly pinnipeds, have increased in abundance in recent decades, generating new challenges for balancing human uses with recovery goals via ecosystem-based management. We used a spatio-temporal bioenergetics model of the Northeast Pacific Ocean to quantify how predation by three species of pinnipeds and killer whales (Orcinus orca) on Chinook salmon (Oncorhynchus tshawytscha) has changed since the 1970s along the west coast of North America, and compare these estimates to salmon fisheries. We find that from 1975 to 2015, biomass of Chinook salmon consumed by pinnipeds and killer whales increased from 6,100 to 15,200 metric tons (from 5 to 31.5 million individual salmon). Though there is variation across the regions in our model, overall, killer whales consume the largest biomass of Chinook salmon, but harbor seals (Phoca vitulina) consume the largest number of individuals. The decrease in adult Chinook salmon harvest from 1975–2015 was 16,400 to 9,600 metric tons. Thus, Chinook salmon removals (harvest + consumption) increased in the past 40 years despite catch reductions by fisheries, due to consumption by recovering pinnipeds and endangered killer whales. Long-term management strategies for Chinook salmon will need to consider potential conflicts between rebounding predators or endangered predators and prey
Recommended from our members
Competing tradeoffs between increasing marine mammal predation and fisheries harvest of Chinook salmon
Many marine mammal predators, particularly pinnipeds, have increased in abundance in recent decades, generating new challenges for balancing human uses with recovery goals via ecosystem-based management. We used a spatio-temporal bioenergetics model of the Northeast Pacific Ocean to quantify how predation by three species of pinnipeds and killer whales (Orcinus orca) on Chinook salmon (Oncorhynchus tshawytscha) has changed since the 1970s along the west coast of North America, and compare these estimates to salmon fisheries. We find that from 1975 to 2015, biomass of Chinook salmon consumed by pinnipeds and killer whales increased from 6,100 to 15,200 metric tons (from 5 to 31.5 million individual salmon). Though there is variation across the regions in our model, overall, killer whales consume the largest biomass of Chinook salmon, but harbor seals (Phoca vitulina) consume the largest number of individuals. The decrease in adult Chinook salmon harvest from 1975–2015 was 16,400 to 9,600 metric tons. Thus, Chinook salmon removals (harvest + consumption) increased in the past 40 years despite catch reductions by fisheries, due to consumption by recovering pinnipeds and endangered killer whales. Long-term management strategies for Chinook salmon will need to consider potential conflicts between rebounding predators or endangered predators and prey
Recommended from our members
Competing tradeoffs between increasing marine mammal predation and fisheries harvest of Chinook salmon
Many marine mammal predators, particularly pinnipeds, have increased in abundance in recent decades, generating new challenges for balancing human uses with recovery goals via ecosystem-based management. We used a spatio-temporal bioenergetics model of the Northeast Pacific Ocean to quantify how predation by three species of pinnipeds and killer whales (Orcinus orca) on Chinook salmon (Oncorhynchus tshawytscha) has changed since the 1970s along the west coast of North America, and compare these estimates to salmon fisheries. We find that from 1975 to 2015, biomass of Chinook salmon consumed by pinnipeds and killer whales increased from 6,100 to 15,200 metric tons (from 5 to 31.5 million individual salmon). Though there is variation across the regions in our model, overall, killer whales consume the largest biomass of Chinook salmon, but harbor seals (Phoca vitulina) consume the largest number of individuals. The decrease in adult Chinook salmon harvest from 1975–2015 was 16,400 to 9,600 metric tons. Thus, Chinook salmon removals (harvest + consumption) increased in the past 40 years despite catch reductions by fisheries, due to consumption by recovering pinnipeds and endangered killer whales. Long-term management strategies for Chinook salmon will need to consider potential conflicts between rebounding predators or endangered predators and prey
Satellite Tagging and Biopsy Sampling of Killer Whales at Subantarctic Marion Island: Effectiveness, Immediate Reactions and Long-Term Responses
Remote tissue biopsy sampling and satellite tagging are becoming widely used in large marine vertebrate studies because they allow the collection of a diverse suite of otherwise difficult-to-obtain data which are critical in understanding the ecology of these species and to their conservation and management. Researchers must carefully consider their methods not only from an animal welfare perspective, but also to ensure the scientific rigour and validity of their results. We report methods for shore-based, remote biopsy sampling and satellite tagging of killer whales Orcinus orca at Subantarctic Marion Island. The performance of these methods is critically assessed using 1) the attachment duration of low-impact minimally percutaneous satellite tags; 2) the immediate behavioural reactions of animals to biopsy sampling and satellite tagging; 3) the effect of researcher experience on biopsy sampling and satellite tagging; and 4) the mid- (1 month) and long- (24 month) term behavioural consequences. To study mid- and long-term behavioural changes we used multievent capture-recapture models that accommodate imperfect detection and individual heterogeneity. We made 72 biopsy sampling attempts (resulting in 32 tissue samples) and 37 satellite tagging attempts (deploying 19 tags). Biopsy sampling success rates were low (43%), but tagging rates were high with improved tag designs (86%). The improved tags remained attached for 26±14 days (mean ± SD). Individuals most often showed no reaction when attempts missed (66%) and a slight reaction-defined as a slight flinch, slight shake, short acceleration, or immediate dive-when hit (54%). Severe immediate reactions were never observed. Hit or miss and age-sex class were important predictors of the reaction, but the method (tag or biopsy) was unimportant. Multievent trap-dependence modelling revealed considerable variation in individual sighting patterns; however, there were no significant mid- or long-term changes following biopsy sampling or tagging
Estimated field metabolic rates and prey requirements of resident killer whales
Killer whales are large animals that often feed in groups and thus have the potential to deplete prey populations. Determining predator energy requirements is essential to assessing whether prey availability is sufficient. This is important because one risk factor facing the endangered Southern Resident killer whale distinct population segment is limited prey availability. Body mass, field metabolic rate (FMR), and daily prey energy requirements (DPERs) were estimated for each individual in the population. FMRs were calculated from body mass, assuming they range from five to six times Kleiber-predicted basal metabolic rates. FMRs of adults were also calculated from resident killer whale activity budgets and the metabolic cost of swimming at speeds associated with daily activities. These two methods yielded similar results. Total FMRs varied by age and sex, which is partly due to the long developmental period and sexual dimorphism in killer whales. FMRs for males (465–4,434 kg) ranged from 35,048 to 228,216 kcal/d while FMRs for females (465–3,338 kg) ranged from 35,048 to 184,444 kcal/d. DPERs were calculated from FMRs assuming a standard digestive efficiency. Corresponding DPERs ranged from 41,376 to 269,458 kcal/d and 41,376 to 217,775 kcal/d, respectively