3 research outputs found

    A Privacy Evaluation of Nyx

    Get PDF
    For this project, I will be analyzing the privacy leakage in a certain DDoS mitigation system. Nyx has been shown both in simulation and over live internet traffic to mitigate the effects of DDoS without any cooperation from downstream ASes and without any modifications to current routing protocols. However it does this through BPG-poisoning, which can unintentionally advertise information. This project explores what the traffic from Nyx looks like and what information can be gathered from it. Specifically, Nyx works by defining a deployer/critical relationship whose traffic is moved to maintain even under DDoS circumstances, and I will be evaluating how often that relationship can be discovered. This project will analyze the privacy leakage in the Nyx DDoS mitigation system. Nyx\u27s effectiveness in rerouting critical traffic around congestion has been demonstrated both in simulation and in practice. Importantly, Nyx functions without cooperation from downstream ASes or modifications to current routing protocols. However, Nyx achieves routing based DDoS mitigation through BGP poisoning, which can unintentionally advertise information. This project will analyze Nyx\u27s BPG advertisements to evaluate its privacy implications. Specifically, this work studies whether an adversary can determine the critical relationship that the AS deploying Nyx has defined. We find that in the authors initial naive approach, finding this relationship is essentially trivial and an adversary can narrow down the critical relationship to a maximum of 4 out of 9,767 autonomous systems in the active internet topology. In their more complex approach found in we find that the critical relationship is more difficult to determine with significant accuracy, with our anonymity sets ranging from 3 to 7,788. This project then explores why that range is so large in an attempt to highlight how Nyx could become more privacy focused

    Testing SOAR Tools in Use

    Full text link
    Modern security operation centers (SOCs) rely on operators and a tapestry of logging and alerting tools with large scale collection and query abilities. SOC investigations are tedious as they rely on manual efforts to query diverse data sources, overlay related logs, and correlate the data into information and then document results in a ticketing system. Security orchestration, automation, and response (SOAR) tools are a new technology that promise to collect, filter, and display needed data; automate common tasks that require SOC analysts' time; facilitate SOC collaboration; and, improve both efficiency and consistency of SOCs. SOAR tools have never been tested in practice to evaluate their effect and understand them in use. In this paper, we design and administer the first hands-on user study of SOAR tools, involving 24 participants and 6 commercial SOAR tools. Our contributions include the experimental design, itemizing six characteristics of SOAR tools and a methodology for testing them. We describe configuration of the test environment in a cyber range, including network, user, and threat emulation; a full SOC tool suite; and creation of artifacts allowing multiple representative investigation scenarios to permit testing. We present the first research results on SOAR tools. We found that SOAR configuration is critical, as it involves creative design for data display and automation. We found that SOAR tools increased efficiency and reduced context switching during investigations, although ticket accuracy and completeness (indicating investigation quality) decreased with SOAR use. Our findings indicated that user preferences are slightly negatively correlated with their performance with the tool; overautomation was a concern of senior analysts, and SOAR tools that balanced automation with assisting a user to make decisions were preferred

    AI ATAC 1: An Evaluation of Prominent Commercial Malware Detectors

    Full text link
    This work presents an evaluation of six prominent commercial endpoint malware detectors, a network malware detector, and a file-conviction algorithm from a cyber technology vendor. The evaluation was administered as the first of the Artificial Intelligence Applications to Autonomous Cybersecurity (AI ATAC) prize challenges, funded by / completed in service of the US Navy. The experiment employed 100K files (50/50% benign/malicious) with a stratified distribution of file types, including ~1K zero-day program executables (increasing experiment size two orders of magnitude over previous work). We present an evaluation process of delivering a file to a fresh virtual machine donning the detection technology, waiting 90s to allow static detection, then executing the file and waiting another period for dynamic detection; this allows greater fidelity in the observational data than previous experiments, in particular, resource and time-to-detection statistics. To execute all 800K trials (100K files ×\times 8 tools), a software framework is designed to choreographed the experiment into a completely automated, time-synced, and reproducible workflow with substantial parallelization. A cost-benefit model was configured to integrate the tools' recall, precision, time to detection, and resource requirements into a single comparable quantity by simulating costs of use. This provides a ranking methodology for cyber competitions and a lens through which to reason about the varied statistical viewpoints of the results. These statistical and cost-model results provide insights on state of commercial malware detection
    corecore