4 research outputs found
Improvement in Fluid Loss Control and Viscosity of Water-based drilling Mud under High Temperature and Sodium Chloride Salt Conditions using Nanohydroxyapatite
It is difficult to drill efficiently with bentonite (BN)-based mud (BN-WBM) or water-based muds (WBMs) in high-salt electrolytes and deep wells. This is because the fluid's rheological parameters and filtration properties change in undesirable ways, affecting the well's production efficiency. To fix this, a high-salt and high-temperature-resistant nanohydroxyapatite (nanoHAp) additive was designed using sodium dodecyl sulphate (SDS). 0.1 to 0.5 wt% nanoHAp was added to WBMs, and a salt-resistant BN-WBM with nanoHAp was formulated with 4.8 wt% BN, 5.0 wt% sodium chloride (NaCl), and 0.5 wt% nanoHAp. At 25, 150, 180, and 210° C, the filtration and rheological characteristics of the drilling muds were evaluated. The findings revealed that between 25 and 210° C, nanoHAp increased the viscosity of the WBM by 15–139% at a 1021 s-1 shear rate. It also controlled the fluid loss of the WBM from 12.1-44.6 mL to 6.7-21.8 mL at all temperatures. It serves as an anti-salt agent by decreasing the NaCl-contaminated BN's viscosity by 57% compared to the reference value of 20.8 mPa. s at a shear rate of 1021 s-1. Further, it reduced the fluid loss by 56.8%, from 169 mL to 73 mL at 210° C. The nanoHAp surface has anionic sulphate head groups of SDS that efficiently attach to the BN surface. This keeps the Na+ ions from attacking the plate-like structure of the BN. This study reveals that nanoHAp has the capacity to inhibit BN coalescence and flocculation under saturated Na+ solutions and at high temperatures
Effect of Nanoparticles in Drilling Fluids on the Transportation of Different Cutting Sizes in a Rotating Horizontal Pipe
: Cutting transport is difficult in horizontal borehole regions due to the limited axial velocity distribution. This causes transported cuttings to gravitate to the bottom, generating cutting beds and leading to drilling mishaps. Water-based mud (WBM) that includes nanoparticles (NPs) to determine the cutting transport ratio (CTR) performance using copper II oxide (CuO), aluminium oxide (Al2O3), magnesium oxide (MgO), and silicon dioxide (SiO2) in a horizontal borehole needs further investigation. These NPs ability to transport 0.80–3.60 mm cutting sizes was tested using concentrations of 1.0 and 2.0 g circulated through a horizontal annulus at 3.5 m/s and 120 rpm. With 2.0 g, MgO lowered the viscosity by 60%, whereas SiO2, CuO, and Al2O3 increased it by 49%, 10%, and 87%, respectively. CuO NP decreased the fluid loss (FLAPI) the best, followed by MgO, SiO2, and Al2O3. The FLAPI of the WBM, which was 9.4 mL, dropped to 4.8, 5.1, 7.4, and 8.2 mL with CuO, MgO, SiO2, and Al2O3 NPs, respectively. The CTR performance of the NPs increased with concentration and decreased with increasing cutting size. CuO, having less viscosity than Al2O3 and SiO2, carried the most cutting at all concentrations and sizes. It increased the CTR by 28.8–31.1%, whereas Al2O3 and SiO2 increased it by 22.7–26.7% and 16.7–22.2%, respectively. The lowest increase was 13.6–17.8% for MgO NP. This study demonstrates the favourable impact of NP concentrations on the performance of drilling fluids while presenting many choices for the selection of NPs
Sodium dodecyl sulphate-treated nanohydroxyapatite as an efficient shale stabilizer for water-based drilling fluids
Drilling water-sensitive shale formations often leads to wellbore instability, resulting in drilling problems because of the clay's high-water affinity. To solve this problem, different nanoparticles (NPs), such as nanosilica, have been used to formulate water-based muds with potassium chloride (KCl-WBM). Nevertheless, the unmatched pore size of shale pores when using nanosilica fails to completely prevent shale swelling and dispersion. This study discusses the effects of KCl-WBM with sodium dodecyl sulphate-treated nanohydroxyapatite (nHAp/SDS) on shale swelling inhibition through various laboratory techniques. These techniques encompass the linear swell meter (LSM), the dynamic linear swell meter (DLSM), hot-rolling dispersion, suspension stability, and pore structure characterization of shale. The rheological and filtration characteristics of nHAp/SDS and compatibility tests were also studied, and the results were compared with those of nanosilica and KCl-WBM. At all concentrations, the performance of the nHAp/SDS test fluids surpassed that of nanosilica. When compared with KCl-WBM system at 10 cP and 25 °C, the nHAp/SDS and nanosilica concentrations increased the plastic viscosity by 20–90 % and 10–70 %, respectively. The inhibitory effect of nHAp/SDS surpasses that of conventional KCl-WBM and inorganic nanosilica. By adding 2.0 wt% nHAp/SDS to KCl-WBM, the shale swelling decreased from 10.1 to 4.7 % (a 53.4 % reduction). Nanosilica also reduced the swelling to 6.1 % (a 39.6 % reduction) during the LSM test at 25 °C. Under the DLSM test conditions, the shale swelling increased due to the activation of the clay platelet site at an increased temperature of 80 °C. For instance, between 25 and 80 °C, the DLSM test revealed that the shale plug height expanded from 6.1 to 9.8 % for 2.0 wt% nanosilica, 4.7–7.6 % for 2.0 wt% nHAp/SDS, and 10.1–18.8 % for KCl-WBM. Furthermore, the recovery rate of hot-rolled shale plugs with KCl-WBM increased from 89.8 to 96.2 % for nHAp/SDS and 76.6 to 88.8 % for nanosilica from the initial rates of 52.1–63.3 % between 65 and 120 °C. The contact angle results showed that nHAp/SDS is hydrophobic, reducing shale-water attraction. Moreover, the 12 nm nanosilica matches nanopore sizes to partially block shale pores. This research found that nHAp/SDS has the potential to improve wellbore stability