8 research outputs found

    Mapping and characterizing social-ecological land systems of South America

    Get PDF
    Humans place strong pressure on land and have modified around 75% of Earth’s terrestrial surface. In this context, ecoregions and biomes, merely defined on the basis of their biophysical features, are incomplete characterizations of the territory. Land system science requires classification schemes that incorporate both social and biophysical dimensions. In this study, we generated spatially explicit social-ecological land system (SELS) typologies for South America with a hybrid methodology that combined data-driven spatial analysis with a knowledge-based evaluation by an interdisciplinary group of regional specialists. Our approach embraced a holistic consideration of the social-ecological land systems, gathering a dataset of 26 variables spanning across 7 dimensions: physical, biological, land cover, economic, demographic, political, and cultural. We identified 13 SELS nested in 5 larger social-ecological regions (SER). Each SELS was discussed and described by specific groups of specialists. Although 4 environmental and 1 socioeconomic variable explained most of the distribution of the coarse SER classification, a diversity of 15 other variables were shown to be essential for defining several SELS, highlighting specific features that differentiate them. The SELS spatial classification presented is a systematic and operative characterization of South American social-ecological land systems. We propose its use can contribute as a reference framework for a wide range of applications such as analyzing observations within larger contexts, designing system-specific solutions for sustainable development, and structuring hypothesis testing and comparisons across space. Similar efforts could be done elsewhere in the world

    Land Use, Conservation, Forestry, and Agriculture in Puerto Rico

    No full text
    Global food security concerns emphasize the need for sustainable agriculture and local food production. In Puerto Rico, over 80 percent of food is imported, and local production levels have reached historical lows. Efforts to increase local food production are driven by government agencies, non-government organizations, farmers, and consumers. Integration of geographic information helps plan and balance the reinvention and invigoration of the agriculture sector while maintaining ecological services. We used simple criteria that included currently protected lands and the importance of slope and forest cover in protection from erosion to identify land well-suited for conservation, agriculture and forestry in Puerto Rico. Within these categories we assessed U.S. Department of Agriculture (USDA) farmland soils classification data, lands currently in agricultural production, current land cover, and current land use planning designations. We found that developed lands occupy 13 percent of Puerto Rico; lands well-suited for conservation that include protected areas, riparian buffers, lands surrounding reservoirs, wetlands, beaches, and salt flats, occupy 45 percent of Puerto Rico; potential working lands encompass 42 percent of Puerto Rico. These include lands well-suited for mechanized and non-mechanized agriculture, such as row and specialty crops, livestock, dairy, hay, pasture, and fruits, which occupy 23 percent of Puerto Rico; and areas suitable for forestry production, such as timber and non-timber products, agroforestry, and shade coffee, which occupy 19 percent of Puerto Rico

    Hurricane Maria in the U.S. Caribbean: Disturbance Forces, Variation of Effects, and Implications for Future Storms

    No full text
    The impact of Hurricane Maria on the U.S. Caribbean was used to study the causes of remotely-sensed spatial variation in the effects of (1) vegetation index loss and (2) landslide occurrence. The vegetation index is a measure of canopy ‘greenness’, a combination of leaf chlorophyll, leaf area, canopy cover and structure. A generalized linear model was made for each kind of effect, using idealized maps of the hurricane forces, along with three landscape characteristics that were significantly associated. In each model, one of these characteristics was forest fragmentation, and another was a measure of disturbance-propensity. For the greenness loss model, the hurricane force was wind, the disturbance-propensity measure was initial greenness, and the third landscape characteristic was fraction forest cover. For the landslide occurrence model, the hurricane force was rain, the disturbance-propensity measure was amount of land slope, and the third landscape characteristic was soil clay content. The model of greenness loss had a pseudo R2 of 0.73 and showed the U.S. Caribbean lost 31% of its initial greenness from the hurricane, with 51% lost from the initial in the Luquillo Experimental Forest (LEF) from Hurricane Maria along with Hurricane Irma. More greenness disturbance was seen in areas with less wind sheltering, higher elevation and topographic sides. The model of landslide occurrence had a pseudo R2 of 0.53 and showed the U.S. Caribbean had 34% of its area and 52% of the LEF area with a landslide density of at least one in 1 km2 from Hurricane Maria. Four experiments with parameters from previous storms of wind speed, storm duration, rainfall, and forest structure over the same storm path and topographic landscape were run as examples of possible future scenarios. While intensity of the storm makes by far the largest scenario difference, forest fragmentation makes a sizable difference especially in vulnerable areas of high clay content or high wind susceptibility. This study showed the utility of simple hurricane force calculations connected with landscape characteristics and remote-sensing data to determine forest susceptibility to hurricane effects

    Mapping and characterizing social-ecological land systems of South America

    Get PDF
    Humans place strong pressure on land and have modified around 75% of Earth’s terrestrial surface. In this context, ecoregions and biomes, merely defined on the basis of their biophysical features, are incomplete characterizations of the territory. Land system science requires classification schemes that incorporate both social and biophysical dimensions. In this study, we generated spatially explicit social-ecological land system (SELS) typologies for South America with a hybrid methodology that combined data-driven spatial analysis with a knowledge-based evaluation by an interdisciplinary group of regional specialists. Our approach embraced a holistic consideration of the social-ecological land systems, gathering a dataset of 26 variables spanning across 7 dimensions: physical, biological, land cover, economic, demographic, political, and cultural. We identified 13 SELS nested in 5 larger social-ecological regions (SER). Each SELS was discussed and described by specific groups of specialists. Although 4 environmental and 1 socioeconomic variable explained most of the distribution of the coarse SER classification, a diversity of 15 other variables were shown to be essential for defining several SELS, highlighting specific features that differentiate them. The SELS spatial classification presented is a systematic and operative characterization of South American social-ecological land systems. We propose its use can contribute as a reference framework for a wide range of applications such as analyzing observations within larger contexts, designing system-specific solutions for sustainable development, and structuring hypothesis testing and comparisons across space. Similar efforts could be done elsewhere in the world
    corecore