8 research outputs found

    Electromagnetic and mechanical AC loss of an ITER TF model coil conductor (DP4) under transverse cyclic loading

    Get PDF
    Energising a coil results in a transverse force on the strands pushing the cable towards one side of the jacket. This load causes a transverse compressive strain in strands and in particular in strand crossover points. Besides this, contact surfaces interfere by micro-sliding resulting in friction and anomalous contact resistance behaviour versus force. Two Central Solenoid Model Coil conductors have been tested previously in a cryogenic press and now the experimental results are presented for the Toroidal Field Model Coil (TFMC) conductor (DP4). The press can transmit a variable (cyclic) force of at least 650 kN/m directly to a cable section of 400 mm at 4.2 K. The magnetisation of the conductor and the interstrand resistance (Rc) between various strands inside the cable can be measured by varying pressure. The force on the cable and the displacement are monitored simultaneously in order to determine the effective cable Young's modulus and the mechanical heat generation due to friction and deformation. The mechanical heat generation, the coupling loss time constant n¿ and the Rc of the full-size ITER TFMC conductor have been studied under load up to 40 full loading cycles. The evolution of Rc is comparable to the behaviour found for the CS Model Coil type of conductors. A significant decrease of the cable coupling current time constant, n¿ and mechanical heat generation after cyclic loading is foun

    Electromagnetic and mechanical characterisation of ITER CS-MC conductors affected by transverse cyclic loading, part 1: coupling current loss

    Get PDF
    The magnetic field generated by a coil acts on the cable which results in a transverse force on the strands. This affects the interstrand contact resistances (Rc), the coupling current loss and current redistribution during field changes. A special cryogenic press has been built to study the mechanical and electrical properties of full-size ITER conductor samples under transverse, mechanical loading. The cryogenic press can transmit a variable (cyclic) force up to 650 kN/m to a conductor section of 400 mm length at 4.2 K. The jacket is partly opened in order to transmit the force directly onto the cable. In addition a superconducting dipole coil provides the magnetic field required to perform magnetisation measurements using pick-up coils. The various Rc's between strands selected from different positions inside the cable have been studied. The coupling loss time constants (nτ) during and after loading are verified for the Nb3Sn, 45 kA, 10 and 13 T, ITER Model Coil conductors. A summary of the results obtained with up to several tens of full loading cycles is presented. A significant decrease of the cable nτ after several cycles is observed. The values of the nτ's are discussed with respect to the Rc measurements and a multiple time constant model (MTC)

    Electromagnetic and mechanical characteristaion of ITER CS-MC conductors affected by transverse cyclic loading, part 3: mechanical properties

    Get PDF
    The magnetic field and current of a coil wound with a cable-in-conduit conductor causes a transverse force pushing the cable to one side of the conduit. This load causes elastic and plastic deformation with friction as well as heating due to friction. A special cryogenic press has been built to study the mechanical and electrical properties of full-size ITER conductors under transverse mechanical loading. The cryogenic press can transmit at 4.2 K cyclic forces of 650 kN/m to conductor sections of 400 mm length representative of the peak load on a 50 kA conductor at 13 T. In order to transmit the force directly onto the cable, the conduit is opened partly to allow the cable deformation. The force acting on the cable as well as the displacement are monitored simultaneously in order to determine the mechanical heat generation due to friction. The mechanical loss under load is investigated for the Nb3Sn, 45 kA, 10 and 13 T, central solenoid model cell conductors (CSMC). The mechanical heat generation is determined from the hysteresis in the measured curves of displacement versus applied force. The first results of the effect of some 40 loading cycles are presented and the two conductors are compared. A significant decrease of the cable mechanical heat generation after loading cycles is observed

    Magnetic and mechanical AC loss of the ITER CSI model coil conductor under transverse cyclic loading

    No full text
    The magnetic field in a coil results in a transverse force on the strands pushing the cable towards one side of the jacket. A special cryogenic press has been built to study in a unique way the mechanical and electrical properties of full-size ITER Cable-in-Conduit (CIC) samples under a transverse, mechanical load. The press can transmit a variable (cyclic) force of at least 650 kN/m to a cable section of 400 mm at 4.2 K. The jacket around the cable is partly opened in order to transmit the transverse force directly onto the cable. A superconducting dipole coil provides the AC magnetic field required to perform magnetisation measurements with pick-up coils. In addition the interstrand resistance (Rc) between various strands selected from topologically different positions inside the cable is measured. The force on the cable as well as the displacement are monitored simultaneously in order to determine the effective cable Young's modulus and the mechanical heat generation due to friction and deformation as the force is cycled. The mechanical heat generation, the coupling loss time constant nτ and Rc of a full-size ITER conductor have been studied under load for the first time. An important result is the significant decrease of nτ, after cyclic loading. It is also observed that the mechanical heat generation decreases with cycling

    Electromagnetic and mechanical characterisation of ITER CS-MC conductors affected by transverse cyclic loading: II. Interstrand contact resistances

    No full text
    A special cryogenic press has been built to study the mechanical and electrical properties of full-size ITER multistrand Nb3Sn cable-in-conduit conductor samples under transverse, mechanical loading. This simulates the transverse magnetic force that occurs when the conductors are used in a coil. The cryogenic press can transmit a variable (cyclic) force up to 650 kN/m to a cable section of 400 mm length at 4.2 K. The jacket is opened partly in order to transmit the force directly onto the table. The various interstrand contact resistances (Rcs) between strands selected from sub-cables at different positions inside the cable are measured. A summary of the results obtained with up to several tens of full loading cycles is presented. The cables consist of six last stage sub-cables (petals) which are wrapped with an Inconel 600 ribbon. A significant increase of the intra-petal Rc after several cycles is observed. An opposite effect is noticed for the inter-petal Rc. Upon applying a load of 650 kN/m, the Rc drops for the intra-petal as well as for the inter-petal resistance with respect to zero load

    Electromagnetic and mechanical characterisation of ITER CS-MC conductors affected by transverse cyclic loading: III. Mechanical properties

    No full text
    The magnetic field and current of a coil wound with a cable-in-conduit conductor causes a transverse force pushing the cable to one side of the conduit. This load causes elastic and plastic deformation with friction as well as heating due to friction. A special cryogenic press has been built to study the mechanical and electrical properties of full-size ITER conductors under transverse mechanical loading. The cryogenic press can transmit at 4.2 K cyclic forces of 650 kN/m to conductor sections of 400 mm length representative of the peak load on a 50 kA conductor at 13 T. In order to transmit the force directly onto the cable, the conduit is opened partly to allow the cable deformation. The force acting on the cable as well as the displacement are monitored simultaneously in order to determine the mechanical heat generation due to friction. The mechanical loss under load is investigated for the Nb3Sn, 45 kA, 10 and 13 T, central solenoid model cell conductors (CSMC). The mechanical heat generation is determined from the hysteresis in the measured curves of displacement versus applied force. The first results of the effect of some 40 loading cycles are presented and the two conductors are compared. A significant decrease of the cable mechanical heat generation after loading cycles is observed
    corecore