29 research outputs found
A Signaling Network for Patterning of Neuronal Connectivity in the Drosophila Brain
The precise number and pattern of axonal connections generated during brain development regulates animal behavior. Therefore, understanding how developmental signals interact to regulate axonal extension and retraction to achieve precise neuronal connectivity is a fundamental goal of neurobiology. We investigated this question in the developing adult brain of Drosophila and find that it is regulated by crosstalk between Wnt, fibroblast growth factor (FGF) receptor, and Jun N-terminal kinase (JNK) signaling, but independent of neuronal activity. The Rac1 GTPase integrates a Wnt-Frizzled-Disheveled axon-stabilizing signal and a Branchless (FGF)-Breathless (FGF receptor) axon-retracting signal to modulate JNK activity. JNK activity is necessary and sufficient for axon extension, whereas the antagonistic Wnt and FGF signals act to balance the extension and retraction required for the generation of the precise wiring pattern
Drosophila CPEB Orb2A Mediates Memory Independent of Its RNA-Binding Domain
SummaryLong-term memory and synaptic plasticity are thought to require the synthesis of new proteins at activated synapses. The CPEB family of RNA binding proteins, including Drosophila Orb2, has been implicated in this process. The precise mechanism by which these molecules regulate memory formation is however poorly understood. We used gene targeting and site-specific transgenesis to specifically modify the endogenous orb2 gene in order to investigate its role in long-term memory formation. We show that the Orb2A and Orb2B isoforms, while both essential, have distinct functions in memory formation. These two isoforms have common glutamine-rich and RNA-binding domains, yet Orb2A uniquely requires the former and Orb2B the latter. We further show that Orb2A induces Orb2 complexes in a manner dependent upon both its glutamine-rich region and neuronal activity. We propose that Orb2B acts as a conventional CPEB to regulate transport and/or translation of specific mRNAs, whereas Orb2A acts in an unconventional manner to form stable Orb2 complexes that are essential for memory to persist
Plexin A Is a Neuronal Semaphorin Receptor that Controls Axon Guidance
AbstractThe Semaphorins comprise a large family of secreted and transmembrane proteins, some of which function as repellents during axon guidance. Semaphorins fall into seven subclasses. Neuropilins are neuronal receptors for class III Semaphorins. In the immune system, VESPR, a member of the Plexin family, is a receptor for a viral-encoded Semaphorin. Here, we identify two Drosophila Plexins, both of which are expressed in the developing nervous system. We present evidence that Plexin A is a neuronal receptor for class I Semaphorins (Sema 1a and Sema 1b) and show that Plexin A controls motor and CNS axon guidance. Plexins, which themselves contain complete Semaphorin domains, may be both the ancestors of classical Semaphorins and binding partners for Semaphorins
Genetic analysis of glutamate receptors in Drosophila reveals a retrograde signal regulating presynaptic transmitter release
Postsynaptic sensitivity to glutamate was genetically manipulated at the Drosophila neuromuscular junction (NMJ) to test whether postsynaptic activity can regulate presynaptic function during development. We cloned the gene encoding a second muscle-specific glutamate receptor, DGluRIIB, which is closely related to the previously identified DGluRIIA and located adjacent to it in the genome. Mutations that eliminate DGluRIIA (but not DGluRIIB) or transgenic constructs that increase DGluRIIA expression were generated. When DGluRIIA is missing, the response of the muscle to a single vesicle of transmitter is substantially de- creased. However, the responseof the muscle to nerve stimulation is normal because quantal content is significantly increased. Thus, a decrease in postsynaptic receptors leads to an increase in presynaptic transmitter release, indicating that postsynaptic activity controls a retrograde signal that regulates presynaptic function
In Vivo Monitoring of mRNA Movement in Drosophila Body Wall Muscle Cells Reveals the Presence of Myofiber Domains
Background: In skeletal muscle each muscle cell, commonly called myofiber, is actually a large syncytium containing numerous nuclei. Experiments in fixed myofibers show that mRNAs remain localized around the nuclei in which they are produced. Methodology/Principal Findings: In this study we generated transgenic flies that allowed us to investigate the movement of mRNAs in body wall myofibers of living Drosophila embryos. We determined the dynamic properties of GFP-tagged mRNAs using in vivo confocal imaging and photobleaching techniques and found that the GFP-tagged mRNAs are not free to move throughout myofibers. The restricted movement indicated that body wall myofibers consist of three domains. The exchange of mRNAs between the domains is relatively slow, but the GFP-tagged mRNAs move rapidly within these domains. One domain is located at the centre of the cell and is surrounded by nuclei while the other two domains are located at either end of the fiber. To move between these domains mRNAs have to travel past centrally located nuclei. Conclusions/Significance: These data suggest that the domains made visible in our experiments result from prolonged interactions with as yet undefined structures close to the nuclei that prevent GFP-tagged mRNAs from rapidly moving between the domains. This could be of significant importance for the treatment of myopathies using regenerative cellbase
The dystrophin Dp186 isoform regulates neurotransmitter release at a central synapse in Drosophila
The Dystrophin protein is encoded by the gene whose mutation in humans underlies Duchennes muscular dystrophy, a disease characterized by progressive muscle wasting. A number of Duchenne patients also exhibit poorly understood mental retardation, likely associated with loss of a brain-specific isoform. Furthermore, although Dystrophin isoforms and the related Utrophin protein have long been known to localize at synapses, their functions remain largely unknown. In Drosophila, we find that the CNS-specific Dp186 isoform localizes to the embryonic and larval neuropiles, regions rich in synaptic contacts. In the absence of Dp186, evoked, but not spontaneous, presynaptic release is significantly enhanced. Increased presynaptic release can be fully rescued to wildtype levels by expression of a Dp186 transgene in the postsynaptic motoneuron, indicating that Dp186 likely regulates a retrograde signaling pathway. Potentiation of synaptic currents in the mutant also occurs when cholinergic transmission is inhibited or in the absence of Glass Bottom Boat (Gbb) or Wishful Thinking (Wit), a TGF-β ligand and receptor respectively, both previously implicated in synaptic retrograde signaling. These results are consistent with the possibility that Dp186 modulates other, non-Gbb/Wit dependent, retrograde signaling pathways required to maintain normal synaptic physiology
Lig4 and Rad54 Are Required for Repair of DNA Double-Strand Breaks Induced by P-Element Excision in Drosophila
Site-specific double-strand breaks (DSBs) were generated in the white gene located on the X chromosome of Drosophila by excision of the w(hd) P-element. To investigate the role of nonhomologous end joining (NHEJ) and homologous recombination (HR) in the repair of these breaks, the w(hd) P-element was mobilized in flies carrying mutant alleles of either lig4 or rad54. The survival of both lig4- and rad54-deficient males was reduced to 25% in comparison to the wild type, indicating that both NHEJ and HR are involved in the repair P-induced gaps in males. Survival of lig4-deficient females was not affected at all, implying that HR using the homologous chromosome as a template can partially compensate for the impaired NHEJ pathway. In rad54 mutant females survival was reduced to 70% after w(hd) excision. PCR analysis indicated that the undamaged homologous chromosome may compensate for the potential loss of the broken chromosome in rad54 mutant females after excision. Molecular analysis of the repair junctions revealed microhomology (2–8 bp)-dependent DSB repair in most products. In the absence of Lig4, the 8-bp target site duplication is used more frequently for repair. Our data indicate the presence of efficient alternative end-joining mechanisms, which partly depend on the presence of microhomology but do not require Lig4
Schematic Model Representing the Interaction and Integration of the Signals Controlling the DCN Axon Extension
<p>Our data suggest the following model of DCN axon extension and retraction. DCN axons extend due to active JNK signal. These axons encounter Wnt5 and probably Wnt2 as well, resulting in activation of Disheveled. Disheveled, via its DEP domain, has a negative effect on the activity of the Rac GTPase, thus keeping JNK signaling active. After DCN axons cross the second optic chiasm they encounter a spatially regulated FGF/Branchless signal that activates the FGFR/Breathless pathway. Breathless in turn activates Rac, which inhibits JNK signaling in a subset of axons. These axons then retract back toward the lobula. The wide expression of the different components of these pathways and the modulation of JNK phosphorylation by Dsh and Rac in whole-head extracts strongly suggests that this model may apply to many neuronal types.</p