5 research outputs found

    Dyschromatopsia as a Sole Presenting Feature of Cancer Associated Retinopathy

    No full text
    Cancer associated retinopathy (CAR) is a rare paraneoplastic syndrome that causes autoimmune retinopathy. This occurs as auto-antibodies against tumor-tissue antigens cross-react with retinal-tissue antigens. Patients commonly present with subacute bilateral painless vision loss associated with photopsia and photosensitivity. Symptoms of rod dysfunction include nyctalopia and ring scotomas, while cone dysfunction causes dyschromatopsia, photosensitivity and central scotomas. CAR often presents with near-normal fundoscopy. Herein, we report a case of an uncommon presentation of CAR with acute dyschromatopsia as a sole visual symptom in a patient with known metastatic pancreatic cancer adenocarcinoma

    Dyschromatopsia as a Sole Presenting Feature of Cancer Associated Retinopathy

    No full text

    Myelin oligodendrocyte glycoprotein (MOG) associated optic neuritis in a patient with idiopathic intracranial hypertension (IIH) and compressive optic neuropathy case report

    No full text
    Abstract Background Myelin oligodendrocyte glycoprotein-associated disease (MOGAD) has a wide phenotypic expression and should be considered in a differential diagnosis of patients with optic disc edema and increased intracranial pressure because MOGAD can mimic IIH and compressive optic neuropathy. Case presentation A 53-year-old woman with a history of presumed idiopathic intracranial hypertension (“IIH”) presented with new headache and visual loss. She had a BMI of 35.44 kg/m2 and a past medical history significant for depression, hepatitis C, hyperlipidemia, and uterine cancer post-hysterectomy. She had undergone multiple lumboperitoneal shunts for presumed IIH and had a prior pituitary adenoma resection. Her visual acuity was no light perception OD and counting fingers OS. After neuro-ophthalmic consultation, a repeat cranial MRI showed symmetric thin peripheral optic nerve sheath enhancement of the intra-orbital optic nerves OU. Serum MOG antibody was positive at 1:100 and she was treated with intravenous steroids followed by plasma exchange and rituximab. Conclusions This case highlights the importance of considering MOGAD in the differential diagnosis of optic neuropathy. Although likely multifactorial, we believe that the lack of improvement in our case from presumed IIH and despite adequate neurosurgical decompression of a pituitary adenoma with compression of the optic apparatus reflected underlying unrecognized MOGAD. Clinicians should consider repeat imaging of the orbit (in addition to the head) in cases of atypical IIH or compressive optic neuropathy especially when the clinical course or response to therapy is poor or progressive

    Dynamic Visual Acuity, Vestibulo-Ocular Reflex, and Visual Field in National Football League (NFL) Officiating: Physiology and Visualization Engineering for 3D Virtual On-Field Training

    No full text
    The ability to make on-field, split-second decisions is critical for National Football League (NFL) game officials. Multiple principles in visual function are critical for accuracy and precision of these play calls, including foveation time and unobstructed line of sight, static visual acuity, dynamic visual acuity, vestibulo-ocular reflex, and sufficient visual field. Prior research has shown that a standardized curriculum in these neuro-ophthalmic principles have demonstrated validity and self-rated improvements in understanding, confidence, and likelihood of future utilization by NFL game officials to maximize visual performance during officiating. Virtual reality technology may also be able to help optimize understandings of specific neuro-ophthalmic principles and simulate real-life gameplay. Personal communication between authors and NFL officials and leadership have indicated that there is high interest in 3D virtual on-field training for NFL officiating. In this manuscript, we review the current and past research in this space regarding a neuro-ophthalmic curriculum for NFL officials. We then provide an overview our current visualization engineering process in taking real-life NFL gameplay 2D data and creating 3D environments for virtual reality gameplay training for football officials to practice plays that highlight neuro-ophthalmic principles. We then review in-depth the physiology behind these principles and discuss strategies to implement these principles into virtual reality for football officiating
    corecore