666 research outputs found

    Effects of point defects on the phase diagram of vortex states in high-Tc superconductors in B//c axis

    Full text link
    The phase diagram for the vortex states of high-TcT_{\rm c} superconductors with point defects in Bc\vec{B} \parallel c axis is drawn by large-scale Monte Carlo simulations. The vortex slush (VS) phase is found between the vortex glass (VG) and vortex liquid (VL) phases. The first-order transition between this novel normal phase and the VL phase is characterized by a sharp jump of the density of dislocations. The first-order transition between the Bragg glass (BG) and VG or VS phases is also clarified. These two transitions are compared with the melting transition between the BG and VL phases.Comment: 4 pages, 9 eps figures (included in text), uses revtex.sty, overall changes with several additional data points, though conclusion is unchange

    Nonequilibrium Phase Transitions of Vortex Matter in Three-Dimensional Layered Superconductors

    Full text link
    Large-scale simulations on three-dimensional (3D) frustrated anisotropic XY model have been performed to study the nonequilibrium phase transitions of vortex matter in weak random pinning potential in layered superconductors. The first-order phase transition from the moving Bragg glass to the moving smectic is clarified, based on thermodynamic quantities. A washboard noise is observed in the moving Bragg glass in 3D simulations for the first time. It is found that the activation of the vortex loops play the dominant role in the dynamical melting at high drive.Comment: 3 pages,5 figure

    A quantum Monte Carlo algorithm realizing an intrinsic relaxation

    Full text link
    We propose a new quantum Monte Carlo algorithm which realizes a relaxation intrinsic to the original quantum system. The Monte Carlo dynamics satisfies the dynamic scaling relation τξz\tau\sim \xi^z and is independent of the Trotter number. Finiteness of the Trotter number just appears as the finite-size effect. An infinite Trotter number version of the algorithm is also formulated, which enables us to observe a true relaxation of the original system. The strategy of the algorithm is a compromise between the conventional worldline local flip and the modern cluster loop flip. It is a local flip in the real-space direction and is a cluster flip in the Trotter direction. The new algorithm is tested by the transverse-field Ising model in two dimensions. An accurate phase diagram is obtained.Comment: 9 pages, 4 figure
    corecore