66 research outputs found
Reaction of Brassica species to Sclerotinia sclerotiorum applying inoculation techniques under controlled conditions
Oilseed rape is economically affected by stem rot caused by Sclerotinia sclerotiorum worldwide. Glucosinolates are the specific secondary metabolites of Brassica plants that appear in different profiles of each species. Their hydrolysis products have biocidal activity and may play a role in resistance against plant pathogenic fungi. The resistance of oilseed rape (Brassica napus) cultivars and two other Brassica species (B. nigra and Sinapis alba) was evaluated employing leaf disc inoculation, and oxalic acid and fungal inoculums on leaves of intact plants under controlled conditions. By using leaf disc inoculation, three plant ages were used to compare their reactions against the pathogen. No significant differences between genotypes were observed in this method. However, results demonstrated significant differences in main effects of wounding and plant age. The two intact plant inoculation techniques (oxalic acid and fungal mycelium) resulted in significant differences between genotypes in reaction to the disease. Furthermore, the oxalic acid assay followed the same pattern as fungal inoculations. Among the oilseed rape cultivars, AV-Sapphire and AG-Castle were the most resistant and susceptible genotypes, respectively. Brassica species differed significantly in their reaction to disease, in both wounded and non-wounded leaves with fungal mycelium inoculation and oxalic acid. Overall, non-significant differences between Brassica genotypes showed the unreliability of the leaf disc assay, whereas leaf inoculation of intact plants by means of either oxalic acid or fungal mycelium demonstrated significant differences in lesion size among Brassica cultivars and species
Renewable, ethical? Assessing the energy justice potential of renewable electricity
Energy justice is increasingly being used as a framework to conceptualize the impacts of energy decision making in more holistic ways and to consider the social implications in terms of existing ethical values. Similarly, renewable energy technologies are increasingly being promoted for their environmental and social benefits. However, little work has been done to systematically examine the extent to which, in what ways and in what contexts, renewable energy technologies can contribute to achieving energy justice. This paper assesses the potential of renewable electricity technologies to address energy justice in various global contexts via a systematic review of existing studies analyzed in terms of the principles and dimensions of energy justice. Based on publications including peer reviewed academic literature, books, and in some cases reports by government or international organizations, we assess renewable electricity technologies in both grid integrated and off-grid use contexts. We conduct our investigation through the rubric of the affirmative and prohibitive principles of energy justice and in terms of its temporal, geographic, socio-political, economic, and technological dimensions. Renewable electricity technology development has and continue to have different impacts in different social contexts, and by considering the different impacts explicitly across global contexts, including differences between rural and urban contexts, this paper contributes to identifying and understanding how, in what ways, and in what particular conditions and circumstances renewable electricity technologies may correspond with or work to promote energy justice
- …