4 research outputs found

    Abnormal Cockpit Pilot Driving Behavior Detection Using YOLOv4 Fused Attention Mechanism

    No full text
    The abnormal behavior of cockpit pilots during the manipulation process is an important incentive for flight safety, but the complex cockpit environment limits the detection accuracy, with problems such as false detection, missed detection, and insufficient feature extraction capability. This article proposes a method of abnormal pilot driving behavior detection based on the improved YOLOv4 deep learning algorithm and by integrating an attention mechanism. Firstly, the semantic image features are extracted by running the deep neural network structure to complete the image and video recognition of pilot driving behavior. Secondly, the CBAM attention mechanism is introduced into the neural network to solve the problem of gradient disappearance during training. The CBAM mechanism includes both channel and spatial attention processes, meaning the feature extraction capability of the network can be improved. Finally, the features are extracted through the convolutional neural network to monitor the abnormal driving behavior of pilots and for example verification. The conclusion shows that the deep learning algorithm based on the improved YOLOv4 method is practical and feasible for the monitoring of the abnormal driving behavior of pilots during the flight maneuvering phase. The experimental results show that the improved YOLOv4 recognition rate is significantly higher than the unimproved algorithm, and the calling phase has a mAP of 87.35%, an accuracy of 75.76%, and a recall of 87.36%. The smoking phase has a mAP of 87.35%, an accuracy of 85.54%, and a recall of 85.54%. The conclusion shows that the deep learning algorithm based on the improved YOLOv4 method is practical and feasible for the monitoring of the abnormal driving behavior of pilots in the flight maneuvering phase. This method can quickly and accurately identify the abnormal behavior of pilots, providing an important theoretical reference for abnormal behavior detection and risk management

    Improved LS-SVM Method for Flight Data Fitting of Civil Aircraft Flying at High Plateau

    No full text
    High-plateau flight safety is an important research hotspot in the field of civil aviation transportation safety science. Complete and accurate high-plateau flight data are beneficial for effectively assessing and improving the flight status of civil aviation aircrafts, and can play an important role in carrying out high-plateau operation safety risk analysis. Due to various reasons, such as low temperature and low pressure in the harsh environment of high-plateau flights, the abnormality or loss of the quick access recorder (QAR) data affects the flight data processing and analysis results to a certain extent. In order to effectively solve this problem, an improved least squares support vector machines method is proposed. Firstly, the entropy weight method is used to obtain the index weights. Secondly, the principal component analysis method is used for dimensionality reduction. Finally, the data are fitted and repaired by selecting appropriate eigenvalues through multiple tests based on the LS-SVM. In order to verify the effectiveness of this method, the QAR data related to multiple real plateau flights are used for testing and comparing with the improved method for verification. The fitting results show that the error measurement index mean absolute error of the average error accuracy is more than 90%, and the error index value equal coefficient reaches a high fit degree of 0.99, which proves that the improved least squares support vector machines machine learning model can fit and supplement the missing QAR data in the plateau area through historical flight data to effectively meet application needs

    Improved LS-SVM Method for Flight Data Fitting of Civil Aircraft Flying at High Plateau

    No full text
    High-plateau flight safety is an important research hotspot in the field of civil aviation transportation safety science. Complete and accurate high-plateau flight data are beneficial for effectively assessing and improving the flight status of civil aviation aircrafts, and can play an important role in carrying out high-plateau operation safety risk analysis. Due to various reasons, such as low temperature and low pressure in the harsh environment of high-plateau flights, the abnormality or loss of the quick access recorder (QAR) data affects the flight data processing and analysis results to a certain extent. In order to effectively solve this problem, an improved least squares support vector machines method is proposed. Firstly, the entropy weight method is used to obtain the index weights. Secondly, the principal component analysis method is used for dimensionality reduction. Finally, the data are fitted and repaired by selecting appropriate eigenvalues through multiple tests based on the LS-SVM. In order to verify the effectiveness of this method, the QAR data related to multiple real plateau flights are used for testing and comparing with the improved method for verification. The fitting results show that the error measurement index mean absolute error of the average error accuracy is more than 90%, and the error index value equal coefficient reaches a high fit degree of 0.99, which proves that the improved least squares support vector machines machine learning model can fit and supplement the missing QAR data in the plateau area through historical flight data to effectively meet application needs

    Correction and Fitting Civil Aviation Flight Data EGT Based on RPM: Polynomial Least Squares Analysis

    No full text
    There are different missing flight data due to various reasons in the process of acquisition and storage, especially in general aviation, which cause inconvenience for flight data analysis. Effectively explaining the relationship between flight data parameters and selecting a simple and effective method for fitting and correcting flight data suitable for engineering applications are the main points of the paper. Herein, a convenient and applicable approach of missing data correction and fitting based on the least squares polynomial method is introduced in this work. Firstly, the polynomial fitting model based on the least squares method is used to establish multi-order polynomial by existing flight data since the order of the least squares polynomial has a direct impact on the fitting effect. The order is too high or too small, over-fitting or deviation will occur, resulting in improper data. Therefore, the optimization and selection of the model order are significant for flight data correction and fitting. Because the flight data of the aircraft engine exhaust gas temperature (EGT) are often lost because of the immature detection technology, a series of the multi-order polynomial are established by the relationship of aircraft engine exhaust gas temperature and Revolutions Per Minute (RPM). Case study results confirm the optimal model order is four for the fitting and correction of aircraft engine exhaust temperature, and the least squares polynomial method is applicable and effective for EGT flight data correction and fitting based on RPM data
    corecore