67 research outputs found

    Jet modification in three dimensional fluid dynamics at next-to-leading twist

    Get PDF
    The modification of the single inclusive spectrum of high transverse momentum (pTp_T ) pions emanating from an ultra-relativistic heavy-ion collision is investigated. The deconfined sector is modelled using a full three dimensional (3-D) ideal fluid dynamics simulation. Energy loss of high pTp_T partons and the ensuing modification of their fragmentation is calculated within perturbative QCD at next-to-leading twist, where the magnitude of the higher twist contribution is modulated by the entropy density extracted from the 3-D fluid dynamics simulation. The nuclear modification factor (RAAR_{AA}) for pions with a pT8p_T \geq 8 GeV as a function of centrality as well as with respect to the reaction plane is calculated. The magnitude of contributions to the differential RAAR_{AA} within small angular ranges, from various depths in the dense matter is extracted from the calculation and demonstrate the correlation of the length integrated density and the RAAR_{AA} from a given depth. The significance of the mixed and hadronic phase to the overall magnitude of energy loss are explored.Comment: 5 pages, 4 figures, Revte

    Possible Resolutions of the D-Paradox

    Full text link
    We propose possible ways of explaining the net charge event-by-event fluctuations in Au+Au collisions at the Relativistic Heavy Ion Collider within a quark recombination model. We discuss various methods of estimating the number of quarks at recombination and their implications for the predicted net charge fluctuations. We also discuss the possibility of diquark and quark-antiquark clustering above the deconfinement temperature.Comment: 5 pages, 2 figure

    Transverse Velocity Dependence of the Proton-Antiproton Ratio as a Signature of the QCD Critical Endpoint

    Full text link
    The presence of a critical point in the QCD phase diagram can deform the trajectories describing the evolution of the expanding fireball in the μBT\mu_B-T phase diagram. If the average emission time of hadrons is a function of transverse velocity, as microscopic simulations of the hadronic freeze-out dynamics suggest, the deformation of the hydrodynamic trajectories will change the transverse velocity (βT\beta_{\rm T}) dependence of the proton-antiproton ratio when the fireball passes in the vicinity of the critical point. An unusual βT\beta_{\rm T}-dependence of the pˉ/p\bar{p}/p ratio in a narrow beam energy window would thus signal the presence of the critical point.Comment: Final version accepted for publicatio

    Elliptic flow of resonances at RHIC: probing final state interactions and the structure of resonances

    Full text link
    We propose the measurement of the elliptic flow of hadron resonances at the Relativistic Heavy Ion Collider as a tool to probe the amount of hadronic final state interactions for resonances at intermediate and large transverse momenta. This can be achieved by looking at systematic deviations of the measured flow coefficient v2v_2 from the scaling law given by the quark recombination formalism. Our method can be generalized to explore the structure of exotic particles, such as the recently found pentaquark Θ+(1540)\Theta^+ (1540).Comment: 5 pages, 2 figures; v2: accepted version for publication in Physical Review C rapid communication

    Hadronization in heavy ion collisions: Recombination and fragmentation of partons

    Full text link
    We argue that the emission of hadrons with transverse momentum up to about 5 GeV/c in central relativistic heavy ion collisions is dominated by recombination, rather than fragmentation of partons. This mechanism provides a natural explanation for the observed constant baryon-to-meson ratio of about one and the apparent lack of a nuclear suppression of the baryon yield in this momentum range. Fragmentation becomes dominant at higher transverse momentum, but the transition point is delayed by the energy loss of fast partons in dense matter.Comment: 4 pages, 2 figures; v2: reference [8] added; v3: Eq.(2) corrected, two references added, version to appear in PR

    Angular hadron correlations probing the early medium evolution

    Get PDF
    Hard processes are a well calibrated probe to study heavy-ion collisions. However, the information to be gained from the nuclear suppression factor R_AA is limited, hene one has to study more differential observables to do medium tomography. The angular correlations of hadrons associated with a hard trigger appear suitable as they show a rich pattern when going from low p_T to high p_T. Of prime interest is the fate of away side partons with an in-medium pathlength O(several fm). At high p_T the correlations become dominated by the punchtrough of the away side parton with subsequent fragmentation. We discuss what information about the medium density can be gained from the data.Comment: Talk given at the 19th International Conference on Ultrarelativistic Nucleus-Nucleus Collisions: Quark Matter 2006 (QM 2006), Shanghai, China, 14-20 Nov 200

    Systematic Comparison of Jet Energy-Loss Schemes in a 3D hydrodynamic medium

    Full text link
    We utilize a 3D hydrodynamic model to provide the medium evolution for a systematic comparison of jet energy-loss calculations in the BDMPS/ASW, HT and AMY approaches. We find that the parameters of all three calculations can be adjusted to provide a good description of inclusive data on RAAR_{AA} versus transverse momentum. However, we do observe slight differences in their predictions for the azimuthal angular dependence of RAAR_{AA} vs. pTp_T. We also note that the value of the transport coefficient q^\hat{q} needed in the three approaches to describe the data differs significantly.Comment: 4 pages, 4 figures, proceedings of Quark Matter 200

    Charge diffusion constant in hot and dense hadronic matter - A Hadro-molecular-dynamic calculation

    Get PDF
    We evaluate charge diffusion constant of dense and hot hadronic matter based on the molecular dynamical method by using a hadronic collision generator which describes nuclear collisions at energies 10 < E < 100 GeV/A and satisfies detailed balance at low temperatures (T < 200 MeV). For the hot and dense hadronic matter of the temperature range, 100 < T < 200 MeV and baryon number density, 0.16 < nB < 0.32 fm^-3, charge diffusion constant D gradually increases from 0.5 fm c to 2 fm c with temperature and is almost independent of baryon number density. Based on the obtained diffusion constant we make simple discussions on the diffusion of charge fluctuation in ultrarelativistic nuclear collisions.Comment: 13 pages, 4 figure

    Hard and soft probe - medium interactions in a 3D hydro+micro approach at RHIC

    Get PDF
    We utilize a 3D hybrid hydro+micro model for a comprehensive and consistent description of soft and hard particle production in ultra-relativistic heavy-ion collisions at RHIC. In the soft sector we focus on the dynamics of (multi-)strange baryons, where a clear strangeness dependence of their collision rates and freeze-out is observed. In the hard sector we study the radiative energy loss of hard partons in a soft medium in the multiple soft scattering approximation. While the nuclear suppression factor RAAR_{AA} does not reflect the high quality of the medium description (except in a reduced systematic uncertainty in extracting the quenching power of the medium), the hydrodynamical model also allows to study different centralities and in particular the angular variation of RAAR_{AA} with respect to the reaction plane, allowing for a controlled variation of the in-medium path-length.Comment: 5 pages, 4 figures, Quark Matter 2006 proceedings, to appear in Journal of Physics

    A Calculation of Baryon Diffusion Constant in Hot and Dense Hadronic Matter Based on an Event Generator URASiMA

    Get PDF
    We evaluate thermodynamical quantities and transport coefficients of a dense and hot hadronic matter based on an event generator URASiMA (Ultra-Relativistic AA collision Simulator based on Multiple Scattering Algorithm). The statistical ensembles in equilibrium with fixed temperature and chemical potential are generated by imposing periodic boundary condition to the simulation of URASiMA, where energy density and baryon number density is conserved. Achievement of the thermal equilibrium and the chemical equilibrium are confirmed by the common value of slope parameter in the energy distributions and the saturation of the numbers of contained particles, respectively. By using the generated ensembles, we investigate the temperature dependence and the chemical potential dependence of the baryon diffusion constant of a dense and hot hadronic matter.Comment: 15 pages, 5 figures, LaTeX2
    corecore