53 research outputs found

    Cyclic and Sleep-Like Spontaneous Alternations of Brain State Under Urethane Anaesthesia

    Get PDF
    Background: Although the induction of behavioural unconsciousness during sleep and general anaesthesia has been shown to involve overlapping brain mechanisms, sleep involves cyclic fluctuations between different brain states known as active (paradoxical or rapid eye movement: REM) and quiet (slow-wave or non-REM: nREM) stages whereas commonly used general anaesthetics induce a unitary slow-wave brain state. Methodology/Principal Findings: Long-duration, multi-site forebrain field recordings were performed in urethaneanaesthetized rats. A spontaneous and rhythmic alternation of brain state between activated and deactivated electroencephalographic (EEG) patterns was observed. Individual states and their transitions resembled the REM/nREM cycle of natural sleep in their EEG components, evolution, and time frame (,11 minute period). Other physiological variables such as muscular tone, respiration rate, and cardiac frequency also covaried with forebrain state in a manner identical to sleep. The brain mechanisms of state alternations under urethane also closely overlapped those of natural sleep in their sensitivity to cholinergic pharmacological agents and dependence upon activity in the basal forebrain nuclei that are the major source of forebrain acetylcholine. Lastly, stimulation of brainstem regions thought to pace state alternations in sleep transiently disrupted state alternations under urethane. Conclusions/Significance: Our results suggest that urethane promotes a condition of behavioural unconsciousness tha

    Chlordane Adsorption Onto Soils and Pig Slurry

    No full text

    Single and multiple dose pharmacokinetics of felbamate in the elderly

    No full text
    Aims The objective of this study was to compare the pharmacokinetics, safety and tolerability of the antiepileptic drug felbamate in young and elderly healthy vounteers

    Ameliorative effects of zinc supplementation on cognitive function and hippocampal leptin signaling pathway in obese male and female rats

    No full text
    Abstract Obesity has been associated with cognitive impairments, increasing the probability of developing dementia. Recently, zinc (Zn) supplementation has attracted an increasing attention as a therapeutic agent for cognitive disorders. Here, we investigated the potential effects of low and high doses of Zn supplementation on cognitive biomarkers and leptin signaling pathway in the hippocampus of high fat diet (HFD)-fed rats. We also explored the impact of sex difference on the response to treatment. Our results revealed a significant increase in body weight, glucose, triglycerides (TG), total cholesterol (TC), total lipids and leptin levels in obese rats as compared to controls. HFD feeding also reduced brain-derived neurotrophic factor (BDNF) levels and increased acetylcholinesterase (AChE) activity in the hippocampus of both sexes. The low and high doses of Zn supplementation improved glucose, TG, leptin, BDNF levels and AChE activity in both male and female obese rats compared to untreated ones. Additionally, downregulated expression of leptin receptor (LepR) gene and increased levels of activated signal transducer and activator of transcription 3 (p-STAT3) that observed in hippocampal tissues of obese rats were successfully normalized by both doses of Zn. In this study, the male rats were more vulnerable to HFD-induced weight gain, most of the metabolic alterations and cognition deficits than females, whereas the female obese rats were more responsive to Zn treatment. In conclusion, we suggest that Zn treatment may be effective in ameliorating obesity-related metabolic dysfunction, central leptin resistance and cognitive deficits. In addition, our findings provide evidence that males and females might differ in their response to Zn treatment
    • …
    corecore