55 research outputs found
Estimate of the free energy difference in mechanical systems from work fluctuations: experiments and models
The work fluctuations of an oscillator in contact with a heat reservoir and
driven out of equilibrium by an external force are studied experimentally. The
oscillator dynamics is modeled by a Langevin equation. We find both
experimentally and theoretically that, if the driving force does not change the
equilibrium properties of the thermal fluctuations of this mechanical system,
the free energy difference between two equilibrium states can be
exactly computed using the Jarzynski equality (JE) and the Crooks relation (CR)
\cite{jarzynski1, crooks1, jarzynski2}, independently of the time scale and
amplitude of the driving force. The applicability limits for the JE and CR at
very large driving forces are discussed. Finally, when the work fluctuations
are Gaussian, we propose an alternative empirical method to compute
which can be safely applied, even in cases where the JE and CR might not hold.
The results of this paper are useful to compute in complex systems
such as the biological ones.Comment: submitted to Journal of Statistical Mechanics: Theory and experimen
Thermal noise properties of two aging materials
In this lecture we review several aspects of the thermal noise properties in
two aging materials: a polymer and a colloidal glass.
The measurements have been performed after a quench for the polymer and
during the transition from a fluid-like to a solid-like state for the gel. Two
kind of noise has been measured: the electrical noise and the mechanical noise.
For both materials we have observed that the electric noise is characterized
by a strong intermittency, which induces a large violation of the Fluctuation
Dissipation Theorem (FDT) during the aging time, and may persist for several
hours at low frequency. The statistics of these intermittent signals and their
dependance on the quench speed for the polymer or on sample concentration for
the gel are studied. The results are in a qualitative agreement with recent
models of aging, that predict an intermittent dynamics. For the mechanical
noise the results are unclear. In the polymer the mechanical thermal noise is
still intermittent whereas for the gel the violation of FDT, if it exists, is
extremely small.Comment: to be published in the Proceedings of the XIX Sitges Conference on
''Jammming, Yielding and Irreversible Deformation in Condensed Matter'',
M.-C.Miguel and M. Rubi eds.,Springer Verlag, Berli
Coherent methods in the X-ray sciences
X-ray sources are developing rapidly and their coherent output is growing
extremely rapidly. The increased coherent flux from modern X-ray sources is
being matched with an associated rapid development in experimental methods.
This article reviews the literature describing the ideas that utilise the
increased brilliance from modern X-ray sources. It explores how ideas in
coherent X-ray science are leading to developments in other areas, and vice
versa. The article describes measurements of coherence properties and uses this
discussion as a base from which to describe partially-coherent diffraction and
X-ray phase contrast imaging, with its applications in materials science,
engineering and medicine. Coherent diffraction imaging methods are reviewed
along with associated experiments in materials science. Proposals for
experiments to be performed with the new X-ray free-electron-lasers are briefly
discussed. The literature on X-ray photon correlation spectroscopy is described
and the features it has in common with other coherent X-ray methods are
identified. Many of the ideas used in the coherent X-ray literature have their
origins in the optical and electron communities and these connections are
explored. A review of the areas in which ideas from coherent X-ray methods are
contributing to methods for the neutron, electron and optical communities is
presented.Comment: A review articel accepted by Advances in Physics. 158 pages, 29
figures, 3 table
Nanoencapsulated capsaicin changes migration behavior and morphology of madin darby canine kidney cell monolayers
We have developed a drug delivery nanosystem based on chitosan and capsaicin. Both substances have a wide range of biological activities. We investigated the nanosystem’s influence on migration and morphology of Madin Darby canine kidney (MDCK-C7) epithelial cells in comparison to the capsaicin-free nanoformulation, free capsaicin, and control cells. For minimally-invasive quantification of cell migration, we applied label-free digital holographic microscopy (DHM) and single-cell tracking. Moreover, quantitative DHM phase images were used as novel stain-free assay to quantify the temporal course of global cellular morphology changes in confluent cell layers. Cytoskeleton alterations and tight junction protein redistributions were complementary analyzed by fluorescence microscopy. Calcium influx measurements were conducted to characterize the influence of the nanoformulations and capsaicin on ion channel activities. We found that both, capsaicin-loaded and unloaded chitosan nanocapsules, and also free capsaicin, have a significant impact on directed cell migration and cellular motility. Increase of velocity and directionality of cell migration correlates with changes in the cell layer surface roughness, tight junction integrity and cytoskeleton alterations. Calcium influx into cells occurred only after nanoformulation treatment but not upon addition of free capsaicin. Our results pave the way for further studies on the biological significance of these findings and potential biomedical applications, e.g. as drug and gene carriers
- …