600 research outputs found

    Was ist ein typischer Arbeiter? Stereotype über soziale Schichten

    Full text link
    Akteure nehmen in Interaktionen immer wieder soziale Kategorisierungen von anderen Personen vor und aktivieren die entsprechenden Stereotypen über diese Kategorien. Sowohl in der Sozialpsychologie als auch in der Soziologie fokussiert allerdings die Forschung auf die Untersuchung askriptiver Sozialkategorien, während Konzepte wie Klasse und Schicht weitgehend ausgeblendet bleiben. In diesem Aufsatz wird argumentiert, dass diese Kategorien in der Bevölkerung weithin bekannt und mental zugänglich sind sowie in entsprechenden Situationen auch aktiviert werden. Damit sind sie auch für die Orientierung in alltäglichen Interaktionssituationen relevant. Auf der Grundlage einer Onlineumfrage wird demonstriert, dass die Stereotypkontraste zwischen verschiedenen sozialen Schichten vor allem durch sozioökonomische Merkmale sowie durch hochkulturelle Lebensstilmerkmale bestimmt werden, während Persönlichkeitsmerkmale eine geringere Bedeutung aufweisen

    Literaturverzeichnis

    No full text

    Literaturliste

    No full text

    Die Medien als Akteure für mehr Innere Sicherheit

    No full text

    Steuergeldwäscherei in Bezug auf direkte Steuern

    No full text

    Search for top squarks in the four-body decay mode with single lepton final states in proton-proton collisions at s= \sqrt{s}= 13 TeV

    No full text
    A search for the pair production of the lightest supersymmetric partner of the top quark, the top squark (t~1 \tilde{\mathrm{t}}_{1} ), is presented. The search targets the four-body decay of the t~1 \tilde{\mathrm{t}}_{1} , which is preferred when the mass difference between the top squark and the lightest supersymmetric particle is smaller than the mass of the W boson. This decay mode consists of a bottom quark, two other fermions, and the lightest neutralino (χ~10 \tilde{\chi}_{1}^{0} ), which is assumed to be the lightest supersymmetric particle. The data correspond to an integrated luminosity of 138 fb1 ^{-1} of proton-proton collisions at a center-of-mass energy of 13 TeV collected by the CMS experiment at the CERN LHC. Events are selected using the presence of a high-momentum jet, an electron or muon with low transverse momentum, and a significant missing transverse momentum. The signal is selected based on a multivariate approach that is optimized for the difference between m(t~1) m(\tilde{\mathrm{t}}_{1}) and m(χ~10) m(\tilde{\chi}_{1}^{0}) . The contribution from leading background processes is estimated from data. No significant excess is observed above the expectation from standard model processes. The results of this search exclude top squarks at 95% confidence level for masses up to 480 and 700 GeV for m(t~1)m(χ~10)= m(\tilde{\mathrm{t}}_{1}) - m(\tilde{\chi}_{1}^{0}) = 10 and 80 GeV, respectively.A search for the pair production of the lightest supersymmetric partner of the top quark, the top squark (t1 {\overset{\sim }{\textrm{t}}}_1 ), is presented. The search targets the four-body decay of the t1 {\overset{\sim }{\textrm{t}}}_1 , which is preferred when the mass difference between the top squark and the lightest supersymmetric particle is smaller than the mass of the W boson. This decay mode consists of a bottom quark, two other fermions, and the lightest neutralino (χ10 {\overset{\sim }{\chi}}_1^0 ), which is assumed to be the lightest supersymmetric particle. The data correspond to an integrated luminosity of 138 fb1^{−1} of proton-proton collisions at a center-of-mass energy of 13 TeV collected by the CMS experiment at the CERN LHC. Events are selected using the presence of a high-momentum jet, an electron or muon with low transverse momentum, and a significant missing transverse momentum. The signal is selected based on a multivariate approach that is optimized for the difference between m(t1 {\overset{\sim }{\textrm{t}}}_1 ) and m(χ10 {\overset{\sim }{\chi}}_1^0 ). The contribution from leading background processes is estimated from data. No significant excess is observed above the expectation from standard model processes. The results of this search exclude top squarks at 95% confidence level for masses up to 480 and 700 GeV for m(t1 {\overset{\sim }{\textrm{t}}}_1 ) − m(χ10 {\overset{\sim }{\chi}}_1^0 ) = 10 and 80 GeV, respectively.[graphic not available: see fulltext]A search for the pair production of the lightest supersymmetric partner of the top quark, the top squark (t~1\tilde{\mathrm{t}}_1), is presented. The search targets the four-body decay of the t~1\tilde{\mathrm{t}}_1, which is preferred when the mass difference between the top squark and the lightest supersymmetric particle is smaller than the mass of the W boson. This decay mode consists of a bottom quark, two other fermions, and the lightest neutralino (χ~10\tilde{\chi}^0_1), which is assumed to be the lightest supersymmetric particle. The data correspond to an integrated luminosity of 138 fb1^{-1} of proton-proton collisions at a center-of-mass energy of 13 TeV collected by the CMS experiment at the CERN LHC. Events are selected using the presence of a high-momentum jet, an electron or muon with low transverse momentum, and a significant missing transverse momentum. The signal is selected based on a multivariate approach that is optimized for the difference between m(t~1)m(\tilde{\mathrm{t}}_1) and m(χ~10)m(\tilde{\chi}^0_1). The contribution from leading background processes is estimated from data. No significant excess is observed above the expectation from standard model processes. The results of this search exclude top squarks at 95% confidence level for masses up to 480 and 700 GeV for m(t~1)m(χ~10m(\tilde{\mathrm{t}}_1) - m(\tilde{\chi}^0_1) = 10 and 80 GeV, respectively

    Search for Higgs Boson and Observation of Z Boson through their Decay into a Charm Quark-Antiquark Pair in Boosted Topologies in Proton-Proton Collisions at s\sqrt{s} =13 TeV

    No full text
    A search for the standard model (SM) Higgs boson (H) produced with transverse momentum greater than 450 GeV and decaying to a charm quark-antiquark (ccˉ\mathrm{c\bar{c}}) pair is presented. The search is performed using proton-proton collision data collected at s\sqrt{s} = 13 TeV by the CMS experiment at the LHC, corresponding to an integrated luminosity of 138 fb1^{-1}. Boosted H \toccˉ\mathrm{c\bar{c}} decay products are reconstructed as a single large-radius jet and identified using a deep neural network charm tagging technique. The method is validated by measuring the Z \toccˉ\mathrm{c\bar{c}} decay process, which is observed in association with jets at high pTp_\mathrm{T} for the first time with a signal strength of 1.00 0.14+0.17_{-0.14}^{+0.17} (syst) ±\pm 0.08 (theo) ±\pm 0.06 (stat), defined as the ratio of the observed process rate to the standard model expectation. The observed (expected) upper limit on σ\sigma(H) B\mathcal{B}(H \toccˉ\mathrm{c\bar{c}}) is set at 47 (39) times the SM prediction at 95% confidence level

    Azimuthal anisotropy of dijet events in PbPb collisions at sNN \sqrt{s_{\textrm{NN}}} = 5.02 TeV

    No full text
    AbstractThe path-length dependent parton energy loss within the dense partonic medium created in lead-lead collisions at a nucleon-nucleon center-of-mass energy of sNN \sqrt{s_{\textrm{NN}}} = 5.02 TeV is studied by determining the azimuthal anisotropies for dijets with high transverse momentum. The data were collected by the CMS experiment in 2018 and correspond to an integrated luminosity of 1.69 nb1^{−1}. For events containing back-to-back jets, correlations in relative azimuthal angle and pseudorapidity (η) between jets and hadrons, and between two hadrons, are constructed. The anisotropies are expressed as the Fourier expansion coefficients vn_{n}, n = 2–4 of these azimuthal distributions. The dijet vn_{n} values are extracted from long-range (1.5 < |∆η| < 2.5) components of these correlations, which suppresses the background contributions from jet fragmentation processes. Positive dijet v2_{2} values are observed which increase from central to more peripheral events, while the v3_{3} and v4_{4} values are consistent with zero within experimental uncertainties.[graphic not available: see fulltext
    corecore