61 research outputs found

    Detecting slope and urban potential unstable areas by means of multi-platform remote sensing techniques: the Volterra (Italy) case study

    Get PDF
    Volterra (Central Italy) is a town of great historical interest, due to its vast and well-preserved cultural heritage, including a 2.6 km long Etruscan-medieval wall enclosure representing one of the most important elements. Volterra is located on a clayey hilltop prone to landsliding, soil erosion, therefore the town is subject to structural deterioration. During 2014, two impressive collapses occurred on the wall enclosure in the southwestern urban sector. Following these events, a monitoring campaign was carried out by means of remote sensing techniques, such as space-borne (PS-InSAR) and ground-based (GB-InSAR) radar interferometry, in order to analyze the displacements occurring both in the urban area and the surrounding slopes, and therefore to detect possible critical sectors with respect to instability phenomena. Infrared thermography (IRT) was also applied with the aim of detecting possible criticalities on the wall-enclosure, with special regards to moisture and seepage areas. PS-InSAR data allowed a stability back-monitoring on the area, revealing 19 active clusters displaying ground velocity higher than 10 mm/year in the period 2011–2015. The GB-InSAR system detected an acceleration up to 1.7 mm/h in near-real time as the March 2014 failure precursor. The IRT technique, employed on a double survey campaign, in both dry and rainy conditions, permitted to acquire 65 thermograms covering 23 sectors of the town wall, highlighting four thermal anomalies. The outcomes of this work demonstrate the usefulness of different remote sensing technologies for deriving information in risk prevention and management, and the importance of choosing the appropriate technology depending on the target, time sampling and investigation scale. In this paper, the use of a multi-platform remote sensing system permitted technical support of the local authorities and conservators, providing a comprehensive overview of the Volterra site, its cultural heritage and landscape, both in near-real time and back-analysis and at different scales of investigation

    Building deformation assessment by means of Persistent Scatterer Interferometry analysis on a landslide-affected area: the Volterra (Italy) case study

    Get PDF
    In recent years, space-borne InSAR (interferometric synthetic aperture radar) techniques have shown their capabilities to provide precise measurements of Earth surface displacements for monitoring natural processes. Landslides threaten human lives and structures, especially in urbanized areas, where the density of elements at risk sensitive to ground movements is high. The methodology described in this paper aims at detecting terrain motions and building deformations at the local scale, by means of satellite radar data combined with in situ validation campaigns. The proposed approach consists of deriving maximum settlement directions of the investigated buildings from displacement data revealed by radar measurements and then in the cross-comparison of these values with background geological data, constructive features and on-field evidence. This validation permits better understanding whether or not the detected movements correspond to visible and effective damages to buildings. The method has been applied to the southwestern sector of Volterra (Tuscany region, Italy), which is a landslide-affected and partially urbanized area, through the use of COSMO-SkyMed satellite images as input data. Moreover, we discuss issues and possible misinterpretations when dealing with PSI (Persistent Scatterer Interferometry) data referring to single manufactures and the consequent difficulty of attributing the motion rate to ground displacements, rather than to structural failures

    Catching geomorphological response to volcanic activity on steep slope volcanoes using multi-platform remote sensing

    Get PDF
    The geomorphological evolution of the volcanic Island of Stromboli (Italy) between July 2010 and June 2019 has been reconstructed by using multi-temporal, multi-platform remote sensing data. Digital elevation models (DEMs) from PLÉIADES-1 tri-stereo images and from Light Detection and Ranging (LiDAR) acquisitions allowed for topographic changes estimation. Data were comprised of high-spatial-resolution (QUICKBIRD) and moderate spatial resolution (SENTINEL-2) satellite images that allowed for the mapping of areas that were affected by major lithological and morphological changes. PLÉIADES tri-stereo and LiDAR DEMs have been quantitatively and qualitatively compared and, although there are artefacts in the smaller structures (e.g., ridges and valleys), there is still a clear consistency between the two DEMs for the larger structures (as the main valleys and ridges). The period between July 2010 and May 2012 showed only minor changes consisting of volcanoclastic sedimentation and some overflows outside the crater. Otherwise, between May 2012 and May 2017, large topographic changes occurred that were related to the emplacement of the 2014 lava flow in the NE part of the Sciara del Fuoco and to the accumulation of a volcaniclastic wedge in the central part of the Sciara del Fuoco. Between 2017 and 2019, minor changes were again detected due to small accumulation next to the crater terrace and the erosion in lower Sciara del Fuoco.Publishedid 4385V. Processi eruttivi e post-eruttiviJCR Journa

    Shifts in the eruptive styles at Stromboli in 2010-2014 revealed by ground-based InSAR data

    Get PDF
    Ground-Based Interferometric Synthetic Aperture Radar (GBInSAR) is an efficient technique for capturing short, subtle episodes of conduit pressurization in open vent volcanoes like Stromboli (Italy), because it can detect very shallow magma storage, which is difficult to identify using other methods. This technique allows the user to choose the optimal radar location for measuring the most significant deformation signal, provides an exceptional geometrical resolution, and allows for continuous monitoring of the deformation. Here, we present and model ground displacements collected at Stromboli by GBInSAR from January 2010 to August 2014. During this period, the volcano experienced several episodes of intense volcanic activity, culminated in the effusive flank eruption of August 2014. Modelling of the deformation allowed us to estimate a source depth of 482 ± 46 m a.s.l. The cumulative volume change was 4.7 ± 2.6 × 10(5) m(3). The strain energy of the source was evaluated 3-5 times higher than the surface energy needed to open the 6-7 August eruptive fissure. The analysis proposed here can help forecast shifts in the eruptive style and especially the onset of flank eruptions at Stromboli and at similar volcanic systems (e.g. Etna, Piton de La Fournaise, Kilauea)

    Guidelines on the use of inverse velocity method as a tool for setting alarm thresholds and forecasting landslides and structure collapses

    Get PDF
    Predicting the time of failure is a topic of major concern in the field of geological risk management. Several approaches, based on the analysis of displacement monitoring data, have been proposed in recent years to deal with the issue. Among these, the inverse velocity method surely demonstrated its effectiveness in anticipating the time of collapse of rock slopes displaying accelerating trends of deformation rate. However, inferring suitable linear trend lines and deducing reliable failure predictions from inverse velocity plots are processes that may be hampered by the noise present in the measurements; data smoothing is therefore a very important phase of inverse velocity analyses. In this study, different filters are tested on velocity time series from four case studies of geomechanical failure in order to improve, in retrospect, the reliability of failure predictions: Specifically, three major landslides and the collapse of an historical city wall in Italy have been examined. The effects of noise on the interpretation of inverse velocity graphs are also assessed. General guidelines to conveniently perform data smoothing, in relation to the specific characteristics of the acceleration phase, are deduced. Finally, with the aim of improving the practical use of the method and supporting the definition of emergency response plans, some standard procedures to automatically setup failure alarm levels are proposed. The thresholds which separate the alarm levels would be established without needing a long period of neither reference historical data nor calibration on past failure events
    • …
    corecore