38 research outputs found

    Metallic ground state in an ion-gated two-dimensional superconductor

    Get PDF
    Recently emerging two-dimensional (2D) superconductors in atomically thin layers and at heterogeneous interfaces are attracting growing interest in condensed matter physics. Here, we report that an ion-gated zirconium nitride chloride surface, exhibiting a dome-shaped phase diagram with a maximum critical temperature of 14.8 kelvin, behaves as a superconductor persisting to the 2D limit. The superconducting thickness estimated from the upper critical fields is congruent to 1.8 nanometers, which is thinner than one unit-cell. The majority of the vortex phase diagram down to 2 kelvin is occupied by a metallic state with a finite resistance, owing to the quantum creep of vortices caused by extremely weak pinning and disorder. Our findings highlight the potential of electric-field-induced superconductivity, establishing a new platform for accessing quantum phases in clean 2D superconductors.</p

    Superconductivity protected by spin-valley locking in ion-gated MoS2

    Get PDF
    Symmetry-breaking has been known to play a key role in noncentrosymmetric superconductors with strong spin-orbit-interaction (SOI). The studies, however, have been so far mainly focused on a particular type of SOI, known as Rashba SOI, whereby the electron spin is locked to its momentum at a right-angle, thereby leading to an in-planar helical spin texture. Here we discuss electric-field-induced superconductivity in molybdenum disulphide (MoS2), which exhibits a fundamentally different type of intrinsic SOI manifested by an out-of-plane Zeeman-type spin polarization of energy valleys. We find an upper critical field of approximately 52 T at 1.5 K, which indicates an enhancement of the Pauli limit by a factor of four as compared to that in centrosymmetric conventional superconductors. Using realistic tight-binding calculations, we reveal that this unusual behaviour is due to an inter-valley pairing that is symmetrically protected by Zeeman-type spin-valley locking against external magnetic fields. Our study sheds a new light on the interplay of inversion asymmetry with SOI in confined geometries, and its unprecedented role in superconductivity.Comment: 37 pages, 11 figures, http://meetings.aps.org/Meeting/MAR15/Session/G11.1

    Critical Temperature in Bulk Ultrafine-Grained Superconductors of Nb, V, and Ta Processed by High-Pressure Torsion

    Get PDF
    This overview describes the progressive results of the superconducting critical temperature in bulk nanostructured metals (niobium, vanadium and tantalum) processed by high-pressure torsion (HPT). Bulk nanostructured superconductors provide a new route to control superconducting property, because ultrafine-grain structures with a high density of grain boundaries, dislocations, and other crystalline defects modify the superconducting order parameter. The critical temperature Tc in Nb increases with the evolution of grain refinement owing to the quantum confinement of electrons in ultrafine grains. In V and Ta, however, Tc decreases at a certain HPT revolution number (i.e. at certain strain levels). The different behaviour of Tc in the three materials is explained by the competition effect between the quantum size effect and disorder effect; these effects are characterized by the parameters of grain size, electron mean free path, and superconducting coherence length
    corecore