67 research outputs found
Wave equation with concentrated nonlinearities
In this paper we address the problem of wave dynamics in presence of
concentrated nonlinearities. Given a vector field on an open subset of
\CO^n and a discrete set Y\subset\RE^3 with elements, we define a
nonlinear operator on L^2(\RE^3) which coincides with the free
Laplacian when restricted to regular functions vanishing at , and which
reduces to the usual Laplacian with point interactions placed at when
is linear and is represented by an Hermitean matrix. We then consider the
nonlinear wave equation and study the
corresponding Cauchy problem, giving an existence and uniqueness result in the
case is Lipschitz. The solution of such a problem is explicitly expressed
in terms of the solutions of two Cauchy problem: one relative to a free wave
equation and the other relative to an inhomogeneous ordinary differential
equation with delay and principal part . Main properties of
the solution are given and, when is a singleton, the mechanism and details
of blow-up are studied.Comment: Revised version. To appear in Journal of Physics A: Mathematical and
General, special issue on Singular Interactions in Quantum Mechanics:
Solvable Model
Variational properties and orbital stability of standing waves for NLS equation on a star graph
We study standing waves for a nonlinear Schr\"odinger equation on a star
graph {} i.e. half-lines joined at a vertex. At the vertex an
interaction occurs described by a boundary condition of delta type with
strength . The nonlinearity is of focusing power type. The
dynamics is given by an equation of the form , where is the Hamiltonian operator which
generates the linear Schr\"odinger dynamics. We show the existence of several
families of standing waves for every sign of the coupling at the vertex for
every . Furthermore, we determine the ground
states, as minimizers of the action on the Nehari manifold, and order the
various families. Finally, we show that the ground states are orbitally stable
for every allowed if the nonlinearity is subcritical or critical, and
for otherwise.Comment: 36 pages, 2 figures, final version appeared in JD
Constrained energy minimization and orbital stability for the NLS equation on a star graph
We consider a nonlinear Schr\"odinger equation with focusing nonlinearity of
power type on a star graph , written as , where is the selfadjoint operator
which defines the linear dynamics on the graph with an attractive
interaction, with strength , at the vertex. The mass and energy
functionals are conserved by the flow. We show that for the energy at
fixed mass is bounded from below and that for every mass below a critical
mass it attains its minimum value at a certain \hat \Psi_m \in H^1(\GG)
, while for there is no minimum. Moreover, the set of minimizers has
the structure {\mathcal M}={e^{i\theta}\hat \Psi_m, \theta\in \erre}.
Correspondingly, for every there exists a unique
such that the standing wave is orbitally
stable. To prove the above results we adapt the concentration-compactness
method to the case of a star graph. This is non trivial due to the lack of
translational symmetry of the set supporting the dynamics, i.e. the graph. This
affects in an essential way the proof and the statement of
concentration-compactness lemma and its application to minimization of
constrained energy. The existence of a mass threshold comes from the
instability of the system in the free (or Kirchhoff's) case, that in our
setting corresponds to \al=0.Comment: 26 pages, 1 figur
Rigorous Dynamics and Radiation Theory for a Pauli-Fierz Model in the Ultraviolet Limit
The present paper is devoted to the detailed study of quantization and
evolution of the point limit of the Pauli-Fierz model for a charged oscillator
interacting with the electromagnetic field in dipole approximation. In
particular, a well defined dynamics is constructed for the classical model,
which is subsequently quantized according to the Segal scheme. To this end, the
classical model in the point limit is reformulated as a second order abstract
wave equation, and a consistent quantum evolution is given. This allows a study
of the behaviour of the survival and transition amplitudes for the process of
decay of the excited states of the charged particle, and the emission of
photons in the decay process. In particular, for the survival amplitude the
exact time behaviour is found. This is completely determined by the resonances
of the systems plus a tail term prevailing in the asymptotic, long time regime.
Moreover, the survival amplitude exhibites in a fairly clear way the Lamb shift
correction to the unperturbed frequencies of the oscillator.Comment: Shortened version. To appear in J. Math. Phy
Point interactions in acoustics: one dimensional models
A one dimensional system made up of a compressible fluid and several
mechanical oscillators, coupled to the acoustic field in the fluid, is analyzed
for different settings of the oscillators array. The dynamical models are
formulated in terms of singular perturbations of the decoupled dynamics of the
acoustic field and the mechanical oscillators. Detailed spectral properties of
the generators of the dynamics are given for each model we consider. In the
case of a periodic array of mechanical oscillators it is shown that the energy
spectrum presents a band structure.Comment: revised version, 30 pages, 2 figure
The NLS equation in dimension one with spatially concentrated nonlinearities: the pointlike limit
In the present paper we study the following scaled nonlinear Schr\"odinger
equation (NLS) in one space dimension: This equation represents a nonlinear Schr\"odinger
equation with a spatially concentrated nonlinearity. We show that in the limit
, the weak (integral) dynamics converges in to
the weak dynamics of the NLS with point-concentrated nonlinearity: where is the
laplacian with the nonlinear boundary condition at the origin
and
. The convergence occurs for every if and for every otherwise. The same
result holds true for a nonlinearity with an arbitrary number of
concentration pointsComment: 10 page
Blow-up and instability of standing waves for the NLS with a point interaction in dimension two
In the present note we study the NLS equation in dimension two with a point
interaction and in the supercritical regime, showing two results. After
obtaining the (nonstandard) virial formula, we exhibit a set of initial data
that blow-up. Moreover we show the standing waves corresponding to ground states of the action
are strongly unstable, at least for sufficiently high .Comment: 12 pages, minor modification
A Dirac field interacting with point nuclear dynamics
The system describing a single Dirac electron field coupled with classically moving point nuclei is presented and studied. The model is a semi-relativistic extension of corresponding time-dependent one-body Hartree-Fock equation coupled with classical nuclear dynamics, already known and studied both in quantum chemistry and in rigorous mathematical literature. We prove local existence of solutions for data in H\u3c3 with \u3c3 08[1,32[. In the course of the analysis a second new result of independent interest is discussed and proved, namely the construction of the propagator for the Dirac operator with several moving Coulomb singularities
Fast solitons on star graphs
We define the Schr\"odinger equation with focusing, cubic nonlinearity on
one-vertex graphs. We prove global well-posedness in the energy domain and
conservation laws for some self-adjoint boundary conditions at the vertex, i.e.
Kirchhoff boundary condition and the so called and boundary
conditions. Moreover, in the same setting we study the collision of a fast
solitary wave with the vertex and we show that it splits in reflected and
transmitted components. The outgoing waves preserve a soliton character over a
time which depends on the logarithm of the velocity of the ingoing solitary
wave. Over the same timescale the reflection and transmission coefficients of
the outgoing waves coincide with the corresponding coefficients of the linear
problem. In the analysis of the problem we follow ideas borrowed from the
seminal paper \cite{[HMZ07]} about scattering of fast solitons by a delta
interaction on the line, by Holmer, Marzuola and Zworski; the present paper
represents an extension of their work to the case of graphs and, as a
byproduct, it shows how to extend the analysis of soliton scattering by other
point interactions on the line, interpreted as a degenerate graph.Comment: Sec. 2 revised; several misprints corrected; added references; 32
page
- …