24 research outputs found

    Toward the Understanding of the Metabolism of Levodopa I. DFT Investigation of the Equilibrium Geometries, Acid-Base Properties and Levodopa-Water Complexes

    Get PDF
    Levodopa (LD) is used to increase dopamine level for treating Parkinson’s disease. The major metabolism of LD to produce dopamine is decarboxylation. In order to understand the metabolism of LD; the electronic structure of levodopa was investigated at the Density Functional DFT/B3LYP level of theory using the 6-311+G** basis set, in the gas phase and in solution. LD is not planar, with the amino acid side chain acting as a free rotator around several single bonds. The potential energy surface is broad and flat. Full geometry optimization enabled locating and identifying the global minimum on this Potential energy surface (PES). All possible protonation/deprotonation forms of LD were examined and analyzed. Protonation/deprotonation is local in nature, i.e., is not transmitted through the molecular framework. The isogyric protonation/deprotonation reactions seem to involve two subsequent steps: First, deprotonation, then rearrangement to form H-bonded structures, which is the origin of the extra stability of the deprotonated forms. Natural bond orbital (NBO) analysis of LD and its deprotonated forms reveals detailed information of bonding characteristics and interactions across the molecular framework. The effect of deprotonation on the donor-acceptor interaction across the molecular framework and within the two subsystems has also been examined. Attempts to mimic the complex formation of LD with water have been performed

    Prevalence of adrenal masses in Japanese patients with type 2 diabetes mellitus

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>To date, there have been no reports on the prevalence of adrenal masses in type 2 diabetic patients. The present study aimed to evaluate the prevalence of adrenal incidentaloma in type 2 diabetic patients in Japan.</p> <p>Subjects</p> <p>We retrospectively evaluated the presence of adrenal masses using abdominal CT scans in 304 type 2 diabetic patients. In those with adrenal masses, we examined the hormone production capacity of the adrenal mass.</p> <p>Results</p> <p>Fourteen patients (4.6%) had an adrenal mass. Hormonal analysis identified one case as having subclinical Cushing's syndrome, two with primary aldosteronism. Eleven cases had non-functioning masses.</p> <p>Discussion</p> <p>The reported prevalence of adrenal incidentaloma in normal subjects is 0.6-4.0% in abdominal CT scan series. Our results show a relatively high prevalence of adrenal tumors in diabetic patients. On the other hand, the frequency of functional adenoma in diabetic patients is 21.4%, which is similar to that of normal subjects.</p> <p>Conclusion</p> <p>Although further studies are needed to evaluate the prevalence of adrenal tumors in diabetic patients, our data suggest that evaluation of the presence of adrenal masses may be needed in patients with type 2 diabetes mellitus.</p
    corecore