4,530 research outputs found
Direct sampling of the Susskind-Glogower phase distributions
Coarse-grained phase distributions are introduced that approximate to the
Susskind--Glogower cosine and sine phase distributions. The integral relations
between the phase distributions and the phase-parametrized field-strength
distributions observable in balanced homodyning are derived and the integral
kernels are analyzed. It is shown that the phase distributions can be directly
sampled from the field-strength distributions which offers the possibility of
measuring the Susskind--Glogower cosine and sine phase distributions with
sufficiently well accuracy. Numerical simulations are performed to demonstrate
the applicability of the method.Comment: 10 figures using a4.st
Optical Study of the Free Carrier Response of LaTiO3/SrTiO3 Superlattices
We used infrared spectroscopic ellipsometry to investigate the electronic
properties of LaTiO3/SrTiO3 superlattices (SLs). Our results indicated that,
independent of the SL periodicity and individual layer-thickness, the SLs
exhibited a Drude metallic response with sheet carrier density per interface
~3x10^14 cm^-2. This is probably due to the leakage of d-electrons at
interfaces from the Mott insulator LaTiO3 to the band insulator SrTiO3. We
observed a carrier relaxation time ~ 35 fs and mobility ~ 35 cm^2V^-1s^-1 at 10
K, and an unusual temperature dependence of carrier density that was attributed
to the dielectric screening of quantum paraelectric SrTiO3.Comment: 4 pages, 4 figure
Frictional Drag between Two Dilute Two-Dimensional Hole Layers
We report drag measurements on dilute double layer two-dimensional hole
systems in the regime of r_s=19~39. We observed a strong enhancement of the
drag over the simple Boltzmann calculations of Coulomb interaction, and
deviations from the T^2 dependence which cannot be explained by
phonon-mediated, plasmon-enhanced, or disorder-related processes. We suggest
that this deviation results from interaction effects in the dilute regime.Comment: 4 pages, 3 figures, accepted in Phys. Rev. Lett. Added single layer
transport dat
Magnetic Field Induced Insulating Phases at Large
Exploring a backgated low density two-dimensional hole sample in the large
regime we found a surprisingly rich phase diagram. At the highest
densities, beside the , 2/3, and 2/5 fractional quantum Hall states,
we observe both of the previously reported high field insulating and reentrant
insulating phases. As the density is lowered, the reentrant insulating phase
initially strengthens, then it unexpectedly starts weakening until it
completely dissapears. At the lowest densities the terminal quantum Hall state
moves from to . The intricate behavior of the insulating
phases can be explained by a non-monotonic melting line in the -
phase space
Topological insulators in the quaternary chalcogenide compounds and ternary famatinite compounds
We present first-principles calculations to predict several three dimensional
(3D) topological insulators in quaternary chalcogenide compounds which are made
of I-II-IV-VI compositions and in ternary compositions of
I-V-VI famatinite compounds. Among the large members of these two
families, we give examples of naturally occurring compounds which are mainly
Cu-based chalcogenides. We show that these materials are candidates of 3D
topological insulators or can be tuned to obtain topological phase transition
by manipulating the atomic number of the other cation and anion elements. A
band inversion can occur at a single point with considerably large
inversion strength, in addition to the opening of a bulk band gap throughout
the Brillouin zone. We also demonstrate that both of these families are related
to each other by cross-substitutions of cations in the underlying tetragonal
structure and that one can suitably tune their topological properties in a
desired manner.Comment: 7 pages, 4 figure
Dielectric constants of Ir, Ru, Pt, and IrO2: Contributions from bound charges
We investigated the dielectric functions () of Ir, Ru, Pt,
and IrO, which are commonly used as electrodes in ferroelectric thin film
applications. In particular, we investigated the contributions from bound
charges (), since these are important scientifically as
well as technologically: the (0) of a metal electrode is one of
the major factors determining the depolarization field inside a ferroelectric
capacitor. To obtain (0), we measured reflectivity spectra of
sputtered Pt, Ir, Ru, and IrO2 films in a wide photon energy range between 3.7
meV and 20 eV. We used a Kramers-Kronig transformation to obtain real and
imaginary dielectric functions, and then used Drude-Lorentz oscillator fittings
to extract (0) values. Ir, Ru, Pt, and IrO produced
experimental (0) values of 4810, 8210, 5810, and
295, respectively, which are in good agreement with values obtained using
first-principles calculations. These values are much higher than those for
noble metals such as Cu, Ag, and Au because transition metals and IrO have
such strong d-d transitions below 2.0 eV. High (0) values will
reduce the depolarization field in ferroelectric capacitors, making these
materials good candidates for use as electrodes in ferroelectric applications.Comment: 26 pages, 6 figures, 2 table
- …