16 research outputs found

    Heterogeneous Photocatalysis And Its Environmental Applications [a Fotocatálise Heterogênea E Sua Aplicação Ambiental]

    No full text
    This article gives some basic principles of heterogeneous photocatalysis using titanium dioxide as photocatalyst and the state of art of its applications to the abatement of aqueous and atmospheric pollutants.2116972Passos, J.A.L., Pereira, F.A., Tomich, S., (1994) Water Sci. Tech., 29, p. 105Legrini, O., Oliveros, E., Braun, A.M., (1993) Chem. Rev., 93, p. 671Huang, C.P., Dong, C., Tang, Z., (1993) Waste Manag., 13, p. 361Fox, M.A., Dulay, M.T., (1993) Chem. Rev., 93, p. 341Mills, A., Davies, R.H., Worsley, D., (1993) Chem. Soe. Rev., 22, p. 417Pichat, P., (1994) Catai. Today, 19, p. 313Hoffmann, M.R., Martin, S.T., Choi, W., Bahnemann, D.W., (1995) Chem. Rev., 95, p. 69Linsebigler, A.L., Lu, G., Yates, J.T., Jr., (1995) Chem. Rev., 95, p. 735Nogueira, R.F.P., Alberici, R.M., Jardim, W.F., (1997) Ciência e Cultura, 49, p. 14Fujishima, A., Honda, K., (1972) Nature (London), 238, p. 37Pruden, A.L., Ollis, D.F., (1983) J. Catal., 83, p. 404Pruden, A.L., Ollis, D.F., (1983) Environ. Sci. Technol., 17, p. 628Lu, G., Linsebigler, A., Yates, J.T., Jr., (1995) J. Phys. Chem., 99, p. 7626Wong, J.C.S., Linsebigler, A., Lu, G., Fan, J., Yates, J.T., Jr., (1995) J. Phys. Chem., 99, p. 335Matthews, R.W., (1991) Water Res., 25, p. 1169Matthews, R.W., McEvoy, S.R., (1992) Sol. Energy, 49, p. 507Nogueira, R.F.P., Jardim, W.F., (1993) J. Chem. Edftc., 70, p. 861Alberici, R.M., Nogueira, R.F.P., Jardim, W.F., (1995) Ciência Hoje (Technologia), 19, p. 4Nogueira, R.F.P., Jardim, W.F., (1996) Sol. Energy, 56, p. 471Williams, R., (1960) J Phys. Chem., 32, p. 1505Lewis, N.S., Rosenbluth, M.L., (1989) Photocatalysis: Fundamentals and Applications, p. 45. , Serpone, N. e Pelizzetti, E., Eds.John Wiley & Sons, Inc.: New YorkBickley, R.I., Gonzalez-Carreno, T., Lees, J.S., Palmisano, L., Tilley, R.J.D., (1991) J. Solid State Chem., 92, p. 178Wong, W.K., Malati, M.A., (1986) Sol. Energy, 36, p. 163Kondo, M.M., Jardim, W.F., (1991) Water Res., 25, p. 823Alberici, R.M., Jardim, W.F., (1994) Water Res., 28, p. 1845Serpone, N., Lawless, D., Disdier, J., Herrmann, J.-M., (1994) Langmuir, 10, p. 643Ohtani, B., Zhang, S., Handa, J., Kajiwara, H., Nishimoto, S., Kagiya, T., (1992) J. Photocliem. Photobiol., A:Chem., 64, p. 223Lee, W., Shen, H.-S., Dwight, K., Wold, A., (1993) J. Solid State Chem., 106, p. 288Choi, W.Y., Termin, A., Hoffmann, M.R., (1994) Angew. Chem. Int. Ed. Engl., 33, p. 1091Sclafani, A., Mozzanega, M.-N., Pichat, P., (1991) J. Photochem. Photobiol. A:Chem., 59, p. 181Anpo, M., Aikawa, N., Kubokawa, Y., (1984) J. Phys. Chem., 88, p. 3998Witier, P., Estaque, L., Roberge, P.C., Kaliaguine, S., (1977) Can J. Chem. Eng., 55, p. 352Herrmann, J.M., Mu, W., Pichat, P., (1991) Heterog. Catal. Fine Chem., 2, p. 405Papp, J., Soled, S., Dwight, K., Wold, A., (1994) Chem. Mater., 6, p. 496Turchi, C.S., Ollis, D.F., (1989) J. Catal., 119, p. 483Butler, E.C., Davis, A.P., (1993) J. Photochem. Photobiol. A:Chem., 70, p. 273Kormann, C., Bahnemann, D.W., Hoffmann, M.R., (1991) Environ. Sci. Technol., 25, p. 494Ohtani, B., Nishimoto, S.-I., (1993) J. Phys. Chem., 97, p. 920Matthews, R.W., (1988) J. Catal., 111, p. 264Sclafani, A., Mozzanega, M.-N., Pichat, P., (1991) J. Photochem. Photobiol. A: Chem, 59, p. 181Wang, C.M., Heller, A., Gerischer, H., (1992) J. Am. Chem. Soc., 114, p. 5230Matthews, R.W., (1990) Water Res., 24, p. 653Okamoto, K., Yamamoto, Y., Tanaka, H., Tanaka, M., Itaya, A., (1985) Bull. Cliem. Soc. Jpn., 58, p. 2015Augugliaro, V., Loddo, V., Palmisano, L., Schiavello, M., (1995) Solar Energy Mat. Solar Cells, 38, p. 411Al-Ekabi, H., Serpone, N., (1988) J. Phys. Chem., 92, p. 5726Mills, A., Morris, S., Davies, R., (1993) J. Photochem. Photobiol. A:Chem, 70, p. 183Ku, Y., Hsieh, C.B., (1992) Water Res., 26, p. 1451Mills, G., Hoffmann, M.R., (1993) Environ. Sci. Technol., 27, p. 1681Serpone, N., Maruthamuthu, P., Pichat, P., Pelizzetti, E., Hidaka, H., (1995) J. Photochem. Photobiol. A:Cliem., 85, p. 247Aguado, M.A., Anderson, M.A., (1993) Sol. Energy Mater. Solar Cells, 28, p. 345Prairie, M.R., Evans, L.R., Stange, B.M., Martinez, S.L., (1993) Environ. Sci. Technol., 27, p. 1776Tunesi, S., Anderson, M., (1991) J. Phys. Chem., 95, p. 3399Minero, C., Pramauro, E., Pelizzetti, E., Dolci, M., Marchesini, A., (1992) Cliemosphere, 24, p. 1597Percherancier, J.P., Chapelon, R., Pouyet, B., (1995) J. Photochem. Photobiol. A:Chem., 87, p. 261Kinkennon, A.E., Green, D.B., Hutchinson, B., (1995) Cliemosphere, 31, p. 3663Hidaka, H., Zhao, J., Pelizzetti, E., Serpone, N., (1992) J. Pltys. Chem., 96, p. 2226Zhao, J., Hidaka, H., Takamura, A., Pelizzetti, E., Serpone, N., (1993) Langmuir, 9, p. 1646Matthews, R.W., (1989) J. Chem. Soc. Faraday Trans. I, 85, p. 1291Pollema, C.H., Hendrix, J.L., Milosavljevic, E.B., Solujic, L., Nelson, J.H., (1992) J. Photochem. Photobiol. A: Chem., 66, p. 235Mihaylov, B.V., Hendrix, J., Nelson, J.H., (1993) J. Photochem. Photobiol., 72, p. 173Suzuki, K.-I., Satoh, S., Yoshida, T., (1991) Denki Agaku, 59, p. 521Canela, M.C., Alberici, R.M., Jardim, W.F., (1997) Appl. Surf. Sci., , (no prelo)Alberici, R. M.Tese de doutorado, Insituto de Química-Unicamp, 1996Matsunaga, T., Tomoda, R., Nakajima, T., Wake, H., (1985) "FEMS" Microbiol. Lett., 29, p. 211Ireland, J.C., Klostermann, P., Rice, E., Clark, R., (1993) Appl. Environ, Microbiol, 59, p. 1669(1996) The Second International Conference on TiO2 Phto-catalytic Purification and Treatment of Water and Air, , Cincinnati, Ohio, EUA. Livro de Resumo

    Heterogeneous Photocatalysis: An Emerging Technology For Remediation Of Voc Contaminated Environments

    No full text
    Heterogeneous photocatalysis has been studied in the last two decades for the treatment of contaminated water and wastewaters, and more recently, in the clean up process of contaminated atmosphere. Scientific principles of the method and a survey of the recent literature for aqueous and gas-phase photocatalytic oxidation of volatile organic compounds (VOCs) are presented. The influence of different parameters, types of photoreactors and kinetics of photodegradation are discussed.4901/02/15142

    Simultaneous degradation of ciprofloxacin, amoxicillin, sulfathiazole and sulfamethazine, and disinfection of hospital effluent after biological treatment via photo-Fenton process under ultraviolet germicidal irradiation

    No full text
    A UVC-assisted photo-Fenton process was applied to hospital wastewater that had been submitted to anaerobic treatment. Low iron (10 μM; 0.56 mg L−1) and H2O2 (500 μM; 17 mg L−1) concentrations were used at the natural pH of the effluent (pH ≈ 7.4). Citric acid was employed as a complexation agent, at a 1:1 ratio, in order to maintain Fe3+ soluble at this pH, avoiding extra procedures and costs associated with acidification/basification of the final effluent. The anaerobic process quantitatively reduced the biochemical oxygen demand (BOD5), chemical oxygen demand (COD) and total organic carbon (TOC), with low removal of antibiotics present in the wastewater. Degradation of the antibiotics ciprofloxacin, amoxicillin, sulfathiazole, and sulfamethazine was studied by spiking the anaerobic effluent at initial concentrations of 200 μg L−1. The antibiotics were efficiently degraded (80–95%) using UVC radiation alone, although under this condition, no DOC removal was observed after 90 min. Further additions of H2O2 and iron citrate increased the degradation rate constant (kobs), and 8% of DOC was removed. A lower pH resulted in higher kobs, although this was not essential for application of the photo-Fenton process. Irradiation with a germicidal lamp resulted in greater degradation of the antibiotics, compared to use of a black light lamp or sunlight, since the overall degradation was influenced by photolysis of the antibiotics, photolysis of H2O2, and the Fenton reaction. The photo-Fenton treatment could also be applied directly to the raw hospital wastewater, since no significant difference in degradation of the antibiotics was observed, compared to the anaerobic effluent. The photo-Fenton process under UVA and solar radiation reduced total coliforms and E. coli after 90 min. However, quantitative disinfection of these bacteria present in the Hospital effluent was only accomplished under UVC radiation224761771CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO - CNPQFUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPESP151022/2014-3; 308649/2015-02015/21732-

    Photocatalytic inactivation of Clostridium perfringens and coliphages in water

    No full text
    This study presents results of the photocatalytic inactivation of two groups of microorganisms: spores of the anaerobic bacterium Clostridium perfringens and coliphage. A cylindrical reactor impregnated with titanium dioxide and irradiated with ultraviolet light (15 W) was used. Parameters such as color, turbidity, hydraulic detention time (HDT) and initial concentration of microorganisms were evaluated in relation to the efficiency of the inactivation process. According to the experiments with the bacterium C. perfringens, the reduction in number of microorganisms was higher than 98% after an irradiation time of 152 seconds, independent of color and turbidity. For solutions with low turbidities efficiency of the coliphage inactivation reached approximately 100% between 89 and 104 HDT, while this value was 98% for solutions with higher turbidities

    Emprego do reagente de fenton como agente coagulante na remoção de substâncias húmicas de água por meio da flotação por ar dissolvido e filtração Fenton's reagent as coagulant agent on removing humic substances from water through dissolved air flotation and filtration

    No full text
    O reagente de Fenton foi empregado como agente coagulante no tratamento de água com cor verdadeira elevada (100 ± 5 uH) causada pela introdução de substâncias húmicas extraídas de turfa, empregando-se a flotação por ar dissolvido. Otimizou-se o par de valores dosagem de coagulante x pH de coagulação para posterior construção dos diagramas de coagulação, obtendo-se eficiências de remoção de cor aparente pouco superiores a 60%. Procurou-se simular um tratamento em ciclo completo, realizando-se ensaio de filtração em areia após flotação, obtendo-se efluente de excelente qualidade, apresentando cor aparente, turbidez e absorvância a 253,7 nm remanescentes menores ou iguais a 2 uH, 0,40 uT e 0,009 cm-1, respectivamente, e ferro total residual < 0,005 mg/L e COD < 0,001 mg/L.<br>Fenton's reagent was used as coagulant agent to treat water with high true color (100 ± 5 HU) caused by the introduction of humic substances extracted from peat, using dissolved air flotation. The pair value of coagulant dosage x coagulation pH was optimized to posterior construction of coagulation diagrams, reaching apparent color removal efficiency slightly superior to 60%. It was tried to simulate a treatment with complete cycle, carrying out an experiment with sand filtration after flotation, obtaining an effluent with excellent quality, presenting remnant apparent color, turbidity and absorbance of 253.7 nm less or equal to 2 HU, 0.40 TU and 0.009 cm-1, respectively, and residual total iron< 0.005 mg/L and DOC < 0.001 mg/L
    corecore