5,966 research outputs found

    A Conducting surface in Lee-Wick electrodynamics

    Get PDF
    The Lee-Wick electrodynamics in the vicinity of a conducting plate is investigated. The propagator for the gauge field is calculated and the interaction between the plate and a point-like electric charge is computed. The boundary condition imposed on the vector field is taken to be the one that vanishes, on the plate, the normal component of the dual field strength to the plate. It is shown that the image method is not valid in Lee-Wick electrodynamics.Comment: 11 pages, 1 figur

    A note on the phase transition in a topologically massive Ginzburg-Landau theory

    Full text link
    We consider the phase transition in a model which consists of a Ginzburg-Landau free energy for superconductors including a Chern-Simons term. The mean field theory of Halperin, Lubensky and Ma [Phys. Rev. Lett. 32, 292 (1974)] is applied for this model. It is found that the topological mass, θ\theta, drives the system into different regimes of phase transition. For instance, there is a θc\theta_{c} such that for θ<θc\theta<\theta_{c} a fluctuation induced first order phase transition occurs. On the other hand, for θ>θc\theta>\theta_{c} only the second order phase transition exists. The 1-loop renormalization group analysis gives further insight to this picture. The fixed point structure exhibits tricritical and second order fixed points.Comment: Revised version; uses a more physical parametrization of the renormalization group equations; new references added; one figure added; EuroLatex, 6 page

    A non-perturbative approach to the Coleman- Weinberg mechanism in massless scalar QED

    Get PDF
    We rederive non-perturbatively the Coleman-Weinberg expression for the effective potential for massless scalar QED. Our result is not restricted to small values of the coupling constants. This shows that the Coleman- Weinberg result can be established beyond the range of validity of perturbation theory. Also, we derive it in a manifestly renormalization group invariant way. It is shown that with the derivation given no Landau ghost singularity arises. The finite temperature case is discussed. Pacs number: 11.10.Ef,11.10.Gh

    Phase structure of Abelian Chern-Simons gauge theories

    Full text link
    We study the effect of a Chern-Simons (CS) term in the phase structure of two different Abelian gauge theories. For the compact Maxwell-Chern-Simons theory, we obtain that for values g=n/2πg=n/2\pi of the CS coupling with n=±1,±2n=\pm 1,\pm 2, the theory is equivalent to a gas of closed loops with contact interaction, exhibiting a phase transition in the 3dXY3dXY universality class. We also employ Monte Carlo simulations to study the noncompact U(1) Abelian Higgs model with a CS term. Finite size scaling of the third moment of the action yields critical exponents α\alpha and ν\nu that vary continuously with the strength of the CS term, and a comparison with available analytical results is made.Comment: RevTex4, 4 pages, 1 figure; v3: improvements and corrections made in the first part of the paper; references added. To be published in Europhysics Letter

    Compact U(1) gauge theories in 2+1 dimensions and the physics of low dimensional insulating materials

    Full text link
    Compact abelian gauge theories in d=2+1d=2+1 dimensions arise often as an effective field-theoretic description of models of quantum insulators. In this paper we review some recent results about the compact abelian Higgs model in d=2+1d=2+1 in that context.Comment: 5 pages, 3 figures; based on talk by F.S. Nogueira in the Aachen HEP2003 conferenc
    • …
    corecore