11 research outputs found

    Chemical generation of checkpoint inhibitory T cell engagers for the treatment of cancer

    Get PDF
    Bispecific T cell engagers (BiTEs), a subset of bispecific antibodies (bsAbs), can promote a targeted cancer cell’s death by bringing it close to a cytotoxic T cell. Checkpoint inhibitory T cell engagers (CiTEs) comprise a BiTE core with an added immunomodulatory protein, which serves to reverse cancer-cell immune-dampening strategies, improving efficacy. So far, protein engineering has been the main approach to generate bsAbs and CiTEs, but improved chemical methods for their generation have recently been developed. Homogeneous fragment-based bsAbs constructed from fragment antigen-binding regions (Fabs) can be generated using click chemistry. Here we describe a chemical method to generate biotin-functionalized three-protein conjugates, which include two CiTE molecules, one containing an anti-PD-1 Fab and the other containing an immunomodulatory enzyme, Salmonella typhimurium sialidase. The CiTEs’ efficacy was shown to be superior to that of the simpler BiTE scaffold, with the sialidase-containing CiTE inducing substantially enhanced T cell-mediated cytotoxicity in vitro. The chemical method described here, more generally, enables the generation of multi-protein constructs with further biological applications. [Figure not available: see fulltext.

    Functionalised thermally induced phase separation (TIPS) microparticles enabled for “click” chemistry

    Get PDF
    Due to their homogeneity, tuneable properties, low cost and ease of manufacture, thermally induced phase separation (TIPS) polymeric microparticles are emerging as an exciting class of injectable device for the treatment of damaged tissue or complex diseases, such as cancer. However, relatively little work has explored enhancing surface functionalisation of this system. Herein, we present the functionalisation of TIPS microparticles with both small molecules and an antibody fragment of Herceptin™, via a heterobifunctional pyridazinedione linker capable of participating in SPAAC “click” chemistry, and compare it to the traditional method of preparing active-targeted microparticle systems, that is, physisorption of antibodies to the microparticle surface. Antigen-binding assays demonstrated that functionalisation of microparticles with Herceptin Fab, via a pyridazinedione linker, provided an enhanced avidity to HER2+ when compared to traditional physisorption methods

    Employing defined bioconjugates to generate chemically functionalised gold nanoparticles for in vitro diagnostic applications

    Get PDF
    Novel methods for introducing chemical and biological functionality to the surface of gold nanoparticles serve to increase the utility of this class of nanomaterials across a range of applications. To date, methods for functionalising gold surfaces have relied upon uncontrollable non-specific adsorption, bespoke chemical linkers, or non-generalisable protein–protein interactions. Herein we report a versatile method for introducing functionality to gold nanoparticles by exploiting the strong interaction between chemically functionalised bovine serum albumin (f-BSA) and citrate-capped gold nanoparticles (AuNPs). We establish the generalisability of the method by introducing a variety of functionalities to gold nanoparticles using cheap, commercially available chemical linkers. The utility of this approach is further demonstrated through the conjugation of the monoclonal antibody Ontruzant to f-BSA–AuNPs using inverse electron-demand Diels–Alder (iEDDA) click chemistry, a hitherto unexplored chemistry for AuNP–IgG conjugation. Finally, we show that the AuNP–Ontruzant particles generated via f-BSA–AuNPs have a greater affinity for their target in a lateral flow format when compared to conventional physisorption, highlighting the potential of this technology for producing sensitive diagnostic tests

    Forming next-generation antibody–nanoparticle conjugates through the oriented installation of non-engineered antibody fragments

    Get PDF
    The successful development of targeted nanotherapeutics is contingent upon the conjugation of therapeutic nanoparticles to target-specific ligands, with particular emphasis being placed on antibody-based ligands. Thus, new methods that enable the covalent and precise installation of targeting antibodies to nanoparticle surfaces are greatly desired, especially those which do not rely on costly and time-consuming antibody engineering techniques. Herein we present a novel method for the highly controlled and oriented covalent conjugation of non-engineered antibody F(ab) fragments to PLGA–PEG nanoparticles using disulfide-selective pyridazinedione linkers and strain-promoted alkyne–azide click chemistry. Exemplification of this method with trastuzumab and cetuximab showed significant improvements in both conjugation efficiency and antigen binding capability, when compared to commonly employed strategies for antibody–nanoparticle construction. This new approach paves the way for the development of antibody-targeted nanomedicines with improved paratope availability, reproducibility and uniformity to enhance both biological activity and ease of manufacture

    Oriented attachment of VNAR proteins, via site-selective modification, on PLGA-PEG nanoparticles enhances nanoconjugate performance

    Get PDF
    Herein we report the construction of a nanoparticle-based drug delivery system which targets a key regulator in tumour angiogenesis. We exploit a Variable New Antigen Receptor (VNAR) domain, conjugated using site-specific chemistry, to direct poly lactic acid-co-glycolic acid-polyethylene glycol (PLGA-PEG) nanoparticles to delta like canonical Notch ligand 4 (DLL4). The importance of site-specific chemistry is demonstrated

    Pyridazinediones deliver potent, stable, targeted and efficacious antibody-drug conjugates (ADCs) with a controlled loading of 4 drugs per antibody

    Get PDF
    Herein we report the use of pyridazinediones to functionalise the native solvent accessible interstrand disulfide bonds in trastuzumab with monomethyl auristatin E (MMAE). This method of conjugation delivers serum stable antibody–drug conjugates (ADCs) with a controlled drug loading of 4. Moreover, we demonstrate that the MMAE-bearing ADCs are potent, selective and efficacious against cancer cell lines in both in vitro and in vivo models

    Dosimetria dos cones radiocirúrgicos Radionics de diâmetros de 5 mm a 50 mm para um feixe de 6 MV de um acelerador linear Mevatron MD digital Dosimetry of the Radionics radiosurgery cones from 5 mm to 50 mm diameter for the 6 MV beam of a Mevatron MD digital linac

    No full text
    Os parâmetros dosimétricos de um feixe de raios X de pequeno diâmetro para um sistema de radiocirurgia comercial foram medidos em água com um detector de diodo de Si do tipo p. As razões tecido-máximo, o fator de espalhamento total e os perfis dos feixes a profundidades de 5 e 10 cm foram medidos para 17 feixes de diâmetros circulares de 5 mm a 50 mm, em incrementos de 2,5 mm. Os fatores de espalhamento totais caíram lentamente, de 0,947 para 0,888 entre os cones de 50 mm e 12,5 mm de diâmetro (variação de 7%); para os cones entre 10 mm e 5 mm de diâmetro, esta queda foi bem maior, de 0,854 para 0,666 (variação de 28%). Os valores obtidos para a relação tecido-máximo são consistentes com dados publicados. Os perfis dos feixes foram medidos nas direções x e y, e estão dentro de 0,2 mm para todos os cones entre as duas direções. A medida da largura à meia-altura se encontra dentro de 1 mm com o diâmetro nominal dos cones.<br>The dosimetric parameters of small diameter photon beams of a commercially available radiosurgery system were measured in a water phantom using a p-type Si photon diode. Tissue maximum ratios, total scattering factor and beam profiles at 5 and 10 cm depth were measured for 17 circular beams ranging from 5 mm to 50 mm in diameter, in 1.5 mm steps. The total scattering factor decreased slowly from 0.947 to 0.888 for the cones with diameter between 50 mm and 12.5 mm (7% variation) whereas for cones with diameter between 10 mm and 5 mm the factor decreased more steeply, from 0.854 to 0.666 (28% variation). These tissue maximum ratio data are consistent with the data published by other authors. The beam profiles measured in the x and y directions were aproximately 0.2 mm between the two directions for all cone sizes. The full widths at half maximum were within 1 mm of the nominal cone sizes
    corecore