5,142 research outputs found

    Magnetorotational Instability in a Couette Flow of Plasma

    Get PDF
    All experiments, which have been proposed so far to model the magnetorotational instability (MRI) in the laboratory, involve a Couette flow of liquid metals in a rotating annulus. All liquid metals have small magnetic Prandtl numbers, Pm, of about 10^{-6} (the ratio of kinematic viscosity to magnetic diffusivity). With plasmas both large and small Pm are achievable by varying the temperature and the density of plasma. Compressibility and fast rotation of the plasma result in radial stratification of the equilibrium plasma density. Evolution of perturbations in radially stratified viscous and resistive plasma permeated by an axial uniform magnetic field is considered. The differential rotation of the plasma is induced by the ExB drift in applied radial electric field. Global unstable eigenmodes are calculated by our newly developed matrix code. The plasma is shown to be MRI unstable for parameters easily achievable in experimental setup.Comment: 6 pages, 2 figures; to be published in the Proceedings of the 3d Workshop on Non-Neutral Plasmas, July 2003, Santa Fe, US

    Robustly Unstable Eigenmodes of the Magnetoshearing Instability in Accretion Disk

    Get PDF
    The stability of nonaxisymmetric perturbations in differentially rotating astrophysical accretion disks is analyzed by fully incorporating the properties of shear flows. We verify the presence of discrete unstable eigenmodes with complex and pure imaginary eigenvalues, without any artificial disk edge boundaries, unlike Ogilvie & Pringle(1996)'s claim. By developing the mathematical theory of a non-self-adjoint system, we investigate the nonlocal behavior of eigenmodes in the vicinity of Alfven singularities at omega_D=omega_A, where omega_D is the Doppler-shifted wave frequency and omega_A=k_// v_A is the Alfven frequency. The structure of the spectrum of discrete eigenmodes is discussed and the magnetic field and wavenumber dependence of the growth rate are obtained. Exponentially growing modes are present even in a region where the local dispersion relation theory claims to have stable eigenvalues. The velocity field created by an eigenmode is obtained, which explains the anomalous angular momentum transport in the nonlinear stage of this stability.Comment: 11pages, 11figures, to be published in ApJ. For associated eps files, see http://dino.ph.utexas.edu/~knoguchi

    Magnetorotational Instability in Liquid Metal Couette Flow

    Full text link
    Despite the importance of the magnetorotational instability (MRI) as a fundamental mechanism for angular momentum transport in magnetized accretion disks, it has yet to be demonstrated in the laboratory. A liquid sodium alpha-omega dynamo experiment at the New Mexico Institute of Mining and Technology provides an ideal environment to study the MRI in a rotating metal annulus (Couette flow). A local stability analysis is performed as a function of shear, magnetic field strength, magnetic Reynolds number, and turbulent Prandtl number. The later takes into account the minimum turbulence induced by the formation of an Ekman layer against the rigidly rotating end walls of a cylindrical vessel. Stability conditions are presented and unstable conditions for the sodium experiment are compared with another proposed MRI experiment with liquid gallium. Due to the relatively large magnetic Reynolds number achievable in the sodium experiment, it should be possible to observe the excitation of the MRI for a wide range of wavenumbers and further to observe the transition to the turbulent state.Comment: 12 pages, 22 figures, 1 table. To appear in the Astrophysical Journa

    One-Dimensional Confinement and Enhanced Jahn-Teller Instability in LaVO3_3

    Full text link
    Ordering and quantum fluctuations of orbital degrees of freedom are studied theoretically for LaVO3_3 in spin-C-type antiferromagnetic state. The effective Hamiltonian for the orbital pseudospin shows strong one-dimensional anisotropy due to the negative interference among various exchange processes. This significantly enhances the instability toward lattice distortions for the realistic estimate of the Jahn-Teller coupling by first-principle LDA+UU calculations, instead of favoring the orbital singlet formation. This explains well the experimental results on the anisotropic optical spectra as well as the proximity of the two transition temperatures for spin and orbital orderings.Comment: 4 pages including 4 figure
    corecore