43 research outputs found

    Post-load hyperglycemia as an important predictor of long-term adverse cardiac events after acute myocardial infarction: a scientific study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Diabetes mellitus (DM) and impaired glucose tolerance (IGT) are risk factors for acute myocardial infarction (AMI). However, it is unknown whether hyperglycemic state is associated with increased major adverse cardiovascular events (MACE) after AMI. In this study, we evaluated the relationship between glucometabolic status and MACE in patients after AMI, and determined the critical level of 2 h post-load plasma glucose that may be used to predict MACE.</p> <p>Methods</p> <p>AMI patients (n = 422) were divided into 4 groups as follows: normal glucose tolerance (NGT) group, IGT group, newly diagnosed DM (NDM) group, and previously known DM (PDM) group. MACE of the 4 groups were compared for 2 years from AMI onset.</p> <p>Results</p> <p>The NDM group had a significantly higher event rate than the IGT and NGT groups and had a similar event rate curve to PDM group. The logistic models analyses revealed that 2 h post-load plasma glucose values of ≥160 mg/dL was the only independent predictor of long-term MACE after AMI (p = 0.028, OR: 1.85, 95% CI: 1.07-3.21). The 2-year cardiac event rate of patients with a 2 h post-load hyperglycemia of ≥160 mg/dL was significantly higher than that of patients with 2 h post-load glucose of <160 mg/dL (32.2% vs. 19.8%, p < 0.05) and was similar to that of PDM group (37.4%, p = 0.513).</p> <p>Conclusions</p> <p>NDM increases the risk of MACE after AMI as does PDM. Particularly, post-AMI patients with a 2 h post-load hyperglycemia ≥160 mg/dL may need adjunctive therapy after AMI.</p

    IL-6–dependent spontaneous proliferation is required for the induction of colitogenic IL-17–producing CD8+ T cells

    Get PDF
    We propose a novel role for interleukin (IL) 6 in inducing rapid spontaneous proliferation (SP) of naive CD8+ T cells, which is a crucial step in the differentiation of colitogenic CD8+ T cells. Homeostasis of T cells is regulated by two distinct modes of cell proliferation: major histocompatibility complex/antigen–driven rapid SP and IL-7/IL-15–dependent slow homeostatic proliferation. Using our novel model of CD8+ T cell–dependent colitis, we found that SP of naive CD8+ T cells is essential for inducing pathogenic cytokine-producing effector T cells. The rapid SP was predominantly induced in mesenteric lymph nodes (LNs) but not in peripheral LNs under the influence of intestinal flora and IL-6. Indeed, this SP was markedly inhibited by treatment with anti–IL-6 receptor monoclonal antibody (IL-6R mAb) or antibiotic-induced flora depletion, but not by anti–IL-7R mAb and/or in IL-15–deficient conditions. Concomitantly with the inhibition of SP, anti–IL-6R mAb significantly inhibited the induction of CD8+ T cell–dependent autoimmune colitis. Notably, the transfer of naive CD8+ T cells derived from IL-17−/− mice did not induce autoimmune colitis. Thus, we conclude that IL-6 signaling is crucial for SP under lymphopenic conditions, which subsequently caused severe IL-17–producing CD8+ T cell–mediated autoimmune colitis. We suggest that anti–IL-6R mAb may become a promising strategy for the therapy of colitis

    Pituitary Volume and Socio-Cognitive Functions in Individuals at Risk of Psychosis and Patients With Schizophrenia

    Get PDF
    Objectives: Increased pituitary volume, which probably reflects hypothalamic-pituitary-adrenal (HPA) hyperactivity, has been reported in patients with schizophrenia and individuals at risk of psychosis. On the basis of potential role of abnormal HPA axis function on cognitive impairments in psychosis, we aimed to examine possible relations between the pituitary volume and socio-cognitive impairments in these subjects.Methods: This magnetic resonance imaging study examined the pituitary gland volume in 38 subjects with at-risk mental state (ARMS) [of whom 4 (10.5%) exhibited the transition to schizophrenia], 63 patients with schizophrenia, and 61 healthy controls. Social and cognitive functions of the ARMS and schizophrenia groups were assessed using the Brief Assessment of Cognition in Schizophrenia (BACS), the Schizophrenia Cognition Rating Scale (SCoRS), and the Social and Occupational Functioning Assessment Scale (SOFAS).Results: Both the ARMS and schizophrenia groups had a significantly larger pituitary volume compared to controls. In the schizophrenia group, the pituitary volume was negatively associated with the BACS working memory score. No association was found between the pituitary volume and clinical variables (medication, symptom severity) in either clinical group.Conclusion: Our findings support the notion of common HPA hyperactivity in the ARMS and schizophrenia groups, but abnormal HPA axis function may contribute differently to cognitive deficits according to the illness stages of schizophrenia

    DOCK2 is involved in the host genetics and biology of severe COVID-19

    Get PDF
    「コロナ制圧タスクフォース」COVID-19疾患感受性遺伝子DOCK2の重症化機序を解明 --アジア最大のバイオレポジトリーでCOVID-19の治療標的を発見--. 京都大学プレスリリース. 2022-08-10.Identifying the host genetic factors underlying severe COVID-19 is an emerging challenge. Here we conducted a genome-wide association study (GWAS) involving 2, 393 cases of COVID-19 in a cohort of Japanese individuals collected during the initial waves of the pandemic, with 3, 289 unaffected controls. We identified a variant on chromosome 5 at 5q35 (rs60200309-A), close to the dedicator of cytokinesis 2 gene (DOCK2), which was associated with severe COVID-19 in patients less than 65 years of age. This risk allele was prevalent in East Asian individuals but rare in Europeans, highlighting the value of genome-wide association studies in non-European populations. RNA-sequencing analysis of 473 bulk peripheral blood samples identified decreased expression of DOCK2 associated with the risk allele in these younger patients. DOCK2 expression was suppressed in patients with severe cases of COVID-19. Single-cell RNA-sequencing analysis (n = 61 individuals) identified cell-type-specific downregulation of DOCK2 and a COVID-19-specific decreasing effect of the risk allele on DOCK2 expression in non-classical monocytes. Immunohistochemistry of lung specimens from patients with severe COVID-19 pneumonia showed suppressed DOCK2 expression. Moreover, inhibition of DOCK2 function with CPYPP increased the severity of pneumonia in a Syrian hamster model of SARS-CoV-2 infection, characterized by weight loss, lung oedema, enhanced viral loads, impaired macrophage recruitment and dysregulated type I interferon responses. We conclude that DOCK2 has an important role in the host immune response to SARS-CoV-2 infection and the development of severe COVID-19, and could be further explored as a potential biomarker and/or therapeutic target

    The whole blood transcriptional regulation landscape in 465 COVID-19 infected samples from Japan COVID-19 Task Force

    Get PDF
    「コロナ制圧タスクフォース」COVID-19患者由来の血液細胞における遺伝子発現の網羅的解析 --重症度に応じた遺伝子発現の変化には、ヒトゲノム配列の個人差が影響する--. 京都大学プレスリリース. 2022-08-23.Coronavirus disease 2019 (COVID-19) is a recently-emerged infectious disease that has caused millions of deaths, where comprehensive understanding of disease mechanisms is still unestablished. In particular, studies of gene expression dynamics and regulation landscape in COVID-19 infected individuals are limited. Here, we report on a thorough analysis of whole blood RNA-seq data from 465 genotyped samples from the Japan COVID-19 Task Force, including 359 severe and 106 non-severe COVID-19 cases. We discover 1169 putative causal expression quantitative trait loci (eQTLs) including 34 possible colocalizations with biobank fine-mapping results of hematopoietic traits in a Japanese population, 1549 putative causal splice QTLs (sQTLs; e.g. two independent sQTLs at TOR1AIP1), as well as biologically interpretable trans-eQTL examples (e.g., REST and STING1), all fine-mapped at single variant resolution. We perform differential gene expression analysis to elucidate 198 genes with increased expression in severe COVID-19 cases and enriched for innate immune-related functions. Finally, we evaluate the limited but non-zero effect of COVID-19 phenotype on eQTL discovery, and highlight the presence of COVID-19 severity-interaction eQTLs (ieQTLs; e.g., CLEC4C and MYBL2). Our study provides a comprehensive catalog of whole blood regulatory variants in Japanese, as well as a reference for transcriptional landscapes in response to COVID-19 infection

    Increased Heschl’s Gyrus Duplication in Schizophrenia Spectrum Disorders: A Cross-Sectional MRI Study

    No full text
    Duplicated Heschl&rsquo;s gyrus (HG) is prevalent in patients with schizophrenia and may reflect early neurodevelopmental anomalies. However, it currently remains unclear whether patients with schizotypal disorder, a prototypic disorder within the schizophrenia spectrum, exhibit a similar HG gyrification pattern. In this magnetic resonance imaging study, HG gyrification patterns were examined in 47 patients with schizotypal disorder, 111 with schizophrenia, and 88 age- and sex-matched healthy subjects. HG gyrification patterns were classified as single, common stem duplication (CSD), or complete posterior duplication (CPD). The prevalence of the duplicated HG patterns (CSD or CPD) bilaterally was higher in the schizophrenia and schizotypal groups than in healthy controls, whereas no significant difference was observed between the schizophrenia and schizotypal groups. Schizophrenia patients with the right CPD pattern had less severe positive symptoms, whereas the right single HG pattern was associated with higher doses of antipsychotic medication in schizotypal patients. The present study demonstrated shared HG gyrification patterns in schizophrenia spectrum disorders, which may reflect a common biological vulnerability factor. HG patterns may also be associated with susceptibility to psychopathology

    Increased Heschl’s Gyrus Duplication in Schizophrenia Spectrum Disorders: A Cross-Sectional MRI Study

    No full text
    Duplicated Heschl’s gyrus (HG) is prevalent in patients with schizophrenia and may reflect early neurodevelopmental anomalies. However, it currently remains unclear whether patients with schizotypal disorder, a prototypic disorder within the schizophrenia spectrum, exhibit a similar HG gyrification pattern. In this magnetic resonance imaging study, HG gyrification patterns were examined in 47 patients with schizotypal disorder, 111 with schizophrenia, and 88 age- and sex-matched healthy subjects. HG gyrification patterns were classified as single, common stem duplication (CSD), or complete posterior duplication (CPD). The prevalence of the duplicated HG patterns (CSD or CPD) bilaterally was higher in the schizophrenia and schizotypal groups than in healthy controls, whereas no significant difference was observed between the schizophrenia and schizotypal groups. Schizophrenia patients with the right CPD pattern had less severe positive symptoms, whereas the right single HG pattern was associated with higher doses of antipsychotic medication in schizotypal patients. The present study demonstrated shared HG gyrification patterns in schizophrenia spectrum disorders, which may reflect a common biological vulnerability factor. HG patterns may also be associated with susceptibility to psychopathology

    Amelogenin Exon 5 Peptide Promotes Cell Proliferation and Osteogenic Differentiation in Human Dental Pulp Stem Cells

    No full text
    Amelogenin is a complex enamel matrix protein that consists of various molecular-size proteins and amino acids. A spliced form of amelogenin was identified that included exons 2, 3, 5, 6, and 7. However, the biological function of amelogenin exon 5 on dental pulp remains unknown. We designed a synthetic amelogenin exon 5 encoded peptide (SP), which was based on a protein produced by cells in response to the enamel matrix derivative (EMD). We investigated the effect of the SP on potentiation of osteogenesis and its signal pathway in dental pulp stem cells (DPSCs). DPSCs are an important cell for pulp tissue homeostasis. DPSCs were cultured with SP to examine the effect of cell proliferation and osteogenic differentiation. We also investigated the mitogen-activated protein kinase (MAPK) signaling pathway. SP significantly enhanced cell proliferation and the expression of osteogenic differentiation. Moreover, SP promoted the expression of the MAPK signaling pathway. Therefore, amelogenin exon 5 might contribute to dental pulp capping
    corecore