7 research outputs found
Aharonov-Bohm Physics with Spin II: Spin-Flip Effects in Two-dimensional Ballistic Systems
We study spin effects in the magneto-conductance of ballistic mesoscopic
systems subject to inhomogeneous magnetic fields. We present a numerical
approach to the spin-dependent Landauer conductance which generalizes recursive
Green function techniques to the case with spin. Based on this method we
address spin-flip effects in quantum transport of spin-polarized and
-unpolarized electrons through quantum wires and various two-dimensional
Aharonov-Bohm geometries. In particular, we investigate the range of validity
of a spin switch mechanism recently found which allows for controlling spins
indirectly via Aharonov-Bohm fluxes. Our numerical results are compared to a
transfer-matrix model for one-dimensional ring structures presented in the
first paper (Hentschel et al., submitted to Phys. Rev. B) of this series.Comment: 29 pages, 15 figures. Second part of a series of two article
Genome-wide gene expression profiling to predict resistance to anthracyclines in breast cancer patients
AbstractValidated biomarkers predictive of response/resistance to anthracyclines in breast cancer are currently lacking. The neoadjuvant Trial of Principle (TOP) study, in which patients with estrogen receptor (ER)–negative tumors were treated with anthracycline (epirubicin) monotherapy, was specifically designed to evaluate the predictive value of topoisomerase II-alpha (TOP2A) and develop a gene expression signature to identify those patients who do not benefit from anthracyclines. Here we describe in details the contents and quality controls for the gene expression and clinical data associated with the study published by Desmedt and colleagues in the Journal of Clinical Oncology in 2011 (Desmedt et al., 2011). We also provide R code to easily access the data and perform the quality controls and basic analyses relevant to this dataset