1,123 research outputs found

    Dirac's hole theory versus quantum field theory

    Get PDF
    Dirac's hole theory and quantum field theory are usually considered equivalent to each other. For models of a certain type, however, the equivalence may not hold as we discuss in this Letter. This problem is closely related to the validity of the Pauli principle in intermediate states of perturbation theory.Comment: No figure

    Approximate Particle Number Projection for Rotating Nuclei

    Get PDF
    Pairing correlations in rotating nuclei are discussed within the Lipkin-Nogami method. The accuracy of the method is tested for the Krumlinde-Szyma\'nski R(5) model. The results of calculations are compared with those obtained from the standard mean field theory and particle-number projection method, and with exact solutions.Comment: 15 pages, 6 figures available on request, REVTEX3.

    Boron Reconstructed Si(111) Surfaces Produced by B2O3 Decomposition

    Get PDF
    Scanning tunneling microscopy has been used to study the growth of boron on the Si(111) surface. Boron was deposited in the form of B2O3 which was decomposed by heating the substrate. With this technique, it is possible to control the B coverage, and also to produce the well known √3 x √3 reconstruction at annealing temperatures as low as 600°C. The optimal conditions for the formation of the √3 x √3 surface by B2O3 decomposition are given. In addition, the nature of the √3 x √3 surface over a range of B coverages and annealing temperatures is described

    Relativistic confinement of neutral fermions with a trigonometric tangent potential

    Get PDF
    The problem of neutral fermions subject to a pseudoscalar potential is investigated. Apart from the solutions for E=±mc2E=\pm mc^{2}, the problem is mapped into the Sturm-Liouville equation. The case of a singular trigonometric tangent potential (∌tanÎłx\sim \mathrm{tan} \gamma x) is exactly solved and the complete set of solutions is discussed in some detail. It is revealed that this intrinsically relativistic and true confining potential is able to localize fermions into a region of space arbitrarily small without the menace of particle-antiparticle production.Comment: 12 page

    Enhancement of Sm3+emission by SnO2nanocrystals in the silica matrix

    Get PDF
    Silica xerogels containing Sm3+ions and SnO2nanocrystals were prepared in a sol–gel process. The image of transmission electron microscopy (TEM) shows that the SnO2nanocrystals are dispersed in the silica matrix. The X-ray diffraction (XRD) of the sample confirms the tetragonal phase of SnO2. The xerogels containing SnO2nanocrystals and Sm3+ions display the characteristic emission of Sm3+ions (4G5/2 → 6HJ(J = 5/2, 7/2, 9/2)) at the excitation of 335 nm which energy corresponds to the energy gap of the SnO2nanocrystals, while no emission of Sm3+ions can be observed for the samples containing Sm3+ions. The enhancement of the Sm3+emission is probably due to the energy transfer from SnO2nanocrystals to Sm3+ions

    First-principles molecular-dynamics simulations of a hydrous silica melt: Structural properties and hydrogen diffusion mechanism

    Full text link
    We use {\it ab initio} molecular dynamics simulations to study a sample of liquid silica containing 3.84 wt.% H2_2O.We find that, for temperatures of 3000 K and 3500 K,water is almost exclusively dissolved as hydroxyl groups, the silica network is partially broken and static and dynamical properties of the silica network change considerably upon the addition of water.Water molecules or free O-H groups occur only at the highest temperature but are not stable and disintegrate rapidly.Structural properties of this system are compared to those of pure silica and sodium tetrasilicate melts at equivalent temperatures. These comparisons confirm the picture of a partially broken tetrahedral network in the hydrous liquid and suggest that the structure of the matrix is as much changed by the addition of water than it is by the addition of the same amount (in mole %) of sodium oxide. On larger length scales, correlations are qualitatively similar but seem to be more pronounced in the hydrous silica liquid. Finally, we study the diffusion mechanisms of the hydrogen atoms in the melt. It turns out that HOSi2_2 triclusters and SiO dangling bonds play a decisive role as intermediate states for the hydrogen diffusion.Comment: 25 pages, 18 figures. submitte

    Photometric Observations of an SU UMa-type Dwarf Nova VW Coronae Borealis during Outbursts

    Full text link
    We report the photometric observations of an SU UMa-type dwarf nova VW CrB during two superoutbursts in 2001 and 2003 and a normal outburst in 2003. Superhumps with a period of 0.07287(1) d were observed during the 2003 superoutburst. The change rate of the superhump period was positive. During the normal outburst, there are some hint of modulation up to a 0.2-mag amplitude. However, any periodicity was not found. The recurrence cycles of the normal outburst and the superoutburst, and the distance were estimated to be > ~50 d, 270-500 d, and 690(+230, -170) pc, respectively. These recurrence cycles are usual values for an SU UMa-type dwarf nova having this superhump period. The superhump period of VW CrB was the longest among those of the SU UMa stars with positive derivatives of the superhump period. The coverage of our observations was, however, not enough, and the variation of the Psh change rate of VW CrB is still unknown. A superhump regrowth and a brightening were seen near the end of the plateau phase. Measuring the deviation of the start timings of the brightening and the superhump regrowth (>2 days in VW CrB) will be a key to reveal the mechanism of these phenomena.Comment: 7 pages, 8 figures, to appear in PAS

    Supersymmetry of FRW barotropic cosmologies

    Full text link
    Barotropic FRW cosmologies are presented from the standpoint of nonrelativistic supersymmetry. First, we reduce the barotropic FRW system of differential equations to simple harmonic oscillator differential equations. Employing the factorization procedure, the solutions of the latter equations are divided into the two classes of bosonic (nonsingular) and fermionic (singular) cosmological solutions. We next introduce a coupling parameter denoted by K between the two classes of solutions and obtain barotropic cosmologies with dissipative features acting on the scale factors and spatial curvature of the universe. The K-extended FRW equations in comoving time are presented in explicit form in the low coupling regime. The standard barotropic FRW cosmologies correspond to the dissipationless limit K =0Comment: 6 page
    • 

    corecore