14 research outputs found
Gravity at Work: How the Build-Up of Environments Shape Galaxy Properties
We present results on the heating of the inter-cluster medium (ICM) by
gravitational potential energy from in-falling satellites. We calculate the
available excess energy of baryons once they are stripped from their satellite
and added to the ICM of the hosting environment. this excess energy is a strong
function of environment and we find that it can exceed the contribution from
AGNs or supernovae (SN) by up to two orders of magnitude in the densest
environments/haloes. Cooling by radiative losses is in general fully
compensated by gravitational heating in massive groups and clusters with hot
gas temperature > 1 keV. The reason for the strong environment dependence is
the continued infall of substructure onto dense environments during their
formation in contrast to field-like environments. We show that gravitational
heating is able to reduce the number of too luminous galaxies in models and to
produce model luminosity functions in agreement with observations.Comment: 8 pages, 3 figures. To be published in Proceedings of JENAM 2010,
Symposium 2: "Environment and the formation of galaxies: 30 years later
Star forming dwarf galaxies
Star forming dwarf galaxies (SFDGs) have a high gas content and low
metallicities, reminiscent of the basic entities in hierarchical galaxy
formation scenarios. In the young universe they probably also played a major
role in the cosmic reionization. Their abundant presence in the local volume
and their youthful character make them ideal objects for detailed studies of
the initial stellar mass function (IMF), fundamental star formation processes
and its feedback to the interstellar medium. Occasionally we witness SFDGs
involved in extreme starbursts, giving rise to strongly elevated production of
super star clusters and global superwinds, mechanisms yet to be explored in
more detail. SFDGs is the initial state of all dwarf galaxies and the relation
to the environment provides us with a key to how different types of dwarf
galaxies are emerging. In this review we will put the emphasis on the exotic
starburst phase, as it seems less important for present day galaxy evolution
but perhaps fundamental in the initial phase of galaxy formation.Comment: To appear in JENAM Symposium "Dwarf Galaxies: Keys to Galaxy
Formation and Evolution", P. Papaderos, G. Hensler, S. Recchi (eds.). Lisbon,
September 2010, Springer Verlag, in pres
Morphological Mutations of Dwarf Galaxies
Dwarf galaxies (DGs) are extremely challenging objects in extragalactic
astrophysics. They are expected to originate as the first units in Cold
Dark-Matter cosmology. They are the galaxy type most sensitive to environmental
influences and their division into multiple types with various properties have
invoked the picture of their variant morphological transformations. Detailed
observations reveal characteristics which allow to deduce the evolutionary
paths and to witness how the environment has affected the evolution. Here we
review peculiarities of general morphological DG types and refer to processes
which can deplete gas-rich irregular DGs leading to dwarf ellipticals, while
gas replenishment implies an evolutionary cycling. Finally, as the less
understood DG types the Milky Way satellite dwarf spheroidal galaxies are
discussed in the context of transformation.Comment: 17 pages, 7 figures, Proceedings of Symposium 3 of JENAM 2010 "Dwarf
Galaxies: Key to Galaxy Formation and Evolution", Polychronis Papaderos,
Simone Recchi, Gerhard Hensler (Eds.), Springer Publisher, Heidelberg, ISBN
978-3-642-22017-
High molecular gas fractions in normal massive star-forming galaxies in the young Universe
LettersInternational audiencerare in the local Universe, galaxies like the Milky Way form only a few new stars per year. Typical massive galaxies in the distant Universe formed stars an order of magnitude more rapidly. Unless star formation was significantly more efficient, this difference suggests that young galaxies were much more molecular-gas rich. Molecular gas observations in the distant Universe have so far largely been restricted to very luminous, rare objects, including mergers and quasars, and accordingly we do not yet have a clear idea about the gas content of more normal (albeit massive) galaxies. Here we report the results of a survey of molecular gas in samples of typical massive-star-forming galaxies at mean redshifts of about 1.2 and 2.3, when the Universe was respectively 40% and 24% of its current age. Our measurements reveal that distant star forming galaxies were indeed gas rich, and that the star formation efficiency is not strongly dependent on cosmic epoch. The average fraction of cold gas relative to total galaxy baryonic mass at = 2.3 and = 1.2 is respectively about 44% and 34%, three to ten times higher than in today's massive spiral galaxies. The slow decrease between â2 and â1 probably requires a mechanism of semi-continuous replenishment of fresh gas to the young galaxie
The All-Wavelength Extended Groth Strip International Survey (AEGIS) data sets
In this the first of a series of Letters, we present a panchromatic data set in the Extended Groth Strip region of the sky. Our survey, the All-Wavelength Extended Groth Strip International Survey (AEGIS), aims to study the physical properties and evolutionary processes of galaxies at z ⌠1. It includes the following deep, wide-field imaging data sets: Chandra/ACIS X-ray, GALEX ultraviolet, CFHT/MegaCam Legacy Survey optical, CFHT/CFH12K optical, Hubble Space Telescope/ACS optical and NICMOS near-infrared, Palomar/WIRC near-infrared, Spitzer/IRAC mid-infrared, Spitzer/MIPS far-infrared, and VLA radio continuum. In addition, this region of the sky has been targeted for extensive spectroscopy using the Deep Imaging Multi-Object Spectrograph (DEIMOS) on the Keck II 10 m telescope. Our survey is compared to other large multiwavelength surveys in terms of depth and sky coverage. © 2007. The American Astronomical Sociey, All rights reserved
Stellar populations dominated by massive stars in dusty starburst galaxies across time
All measurements of cosmic star formation must assume an initial distribution of stellar masses\u2014the stellar initial mass function\u2014in order to extrapolate from the star-formation rate measured for typically rare, massive stars (of more than eight solar masses) to the total star-formation rate across the full stellar mass spectrum1. The shape of the stellar initial mass function in various galaxy populations underpins our understanding of the formation and evolution of galaxies across cosmic time2. Classical determinations of the stellar initial mass function in local galaxies are traditionally made at ultraviolet, optical and near-infrared wavelengths, which cannot be probed in dust-obscured galaxies2,3, especially distant starbursts, whose apparent star-formation rates are hundreds to thousands of times higher than in the Milky Way, selected at submillimetre (rest-frame far-infrared) wavelengths4,5. The 13C/18O isotope abundance ratio in the cold molecular gas\u2014which can be probed via the rotational transitions of the 13CO and C18O isotopologues\u2014is a very sensitive index of the stellar initial mass function, with its determination immune to the pernicious effects of dust. Here we report observations of 13CO and C18O emission for a sample of four dust-enshrouded starbursts at redshifts of approximately two to three, and find unambiguous evidence for a top-heavy stellar initial mass function in all of them. A low 13CO/C18O ratio for all our targets\u2014alongside a well tested, detailed chemical evolution model benchmarked on the Milky Way6\u2014implies that there are considerably more massive stars in starburst events than in ordinary star-forming spiral galaxies. This can bring these extraordinary starbursts closer to the `main sequence' of star-forming galaxies7, although such main-sequence galaxies may not be immune to changes in initial stellar mass function, depending on their star-formation densities