3 research outputs found

    Detection and Characterization of Zoonotic Pathogens in Game Meat Hunted in Northwestern Italy

    No full text
    Wildlife can represent a reservoir of zoonotic pathogens and a public health problem. In the present study, we investigated the spread of zoonotic pathogens (Salmonella spp., Yersinia enterocolitica, Listeria monocytogenes, Shiga-toxin-producing Escherichia coli (STEC), and hepatitis E virus (HEV)) considering the presence of virulence and antibiotic resistance genes in game meat from animals hunted in northwest Italy. During two hunting seasons (2020 to 2022), samples of liver and/or muscle tissue were collected from chamois (n = 48), roe deer (n = 26), deer (n = 39), and wild boar (n = 35). Conventional microbiology and biomolecular methods were used for the detection, isolation, and characterization of the investigated pathogens. Two L. monocytogenes serotype IIa strains were isolated from wild boar liver; both presented fosfomycin resistance gene and a total of 22 virulence genes were detected and specified in the text. Eight Y. enterocolitica biotype 1A strains were isolated from chamois (2), wild boar (5), and deer (1) liver samples; all showed streptogramin and beta-lactam resistance genes; the virulence genes found were myfA (8/8 strains), ymoA (8/8), invA (8/8), ystB (8/8), and ail (4/8). Our data underscore the potential role of wildlife as a carrier of zoonotic and antibiotic-resistant pathogens in northwest Italy and a food safety risk for game meat consumers

    Phytochemical Profile and In Vitro Antioxidant and Photobiological Properties of Different Extracts from Prangos ferulacea Lindl

    No full text
    Interesting photobiological properties have been demonstrated for some Cachrys species, including C. libanotis L., C. sicula L., and C. pungens Jan. The present study was designed to assess the photocytotoxic activity of Prangos ferulacea Lindl. (synonym of C. ferulacea (L.) Calest.). This plant was previously considered a Cachrys species but, at present, it is part of the Prangos genus. P. ferulacea is an orophilous plant present in the eastern Mediterranean and in western Asia. Three different extraction techniques were utilized. Obtained extracts were compared both for their phytochemical content and for their photobiological properties on human melanoma cells irradiated with UVA light. The apoptotic responses, together with the antioxidant activity, were also assessed. P. ferulacea extracts were able to affect cell viability in a concentration-dependent manner, with the sample obtained through supercritical CO2 extraction showing the highest activity (IC50 = 4.91 μg/mL). This research points out the interesting content in the photoactive compounds of this species, namely furanocoumarins, and could provide a starting point for further studies aimed at finding new photosensitizing agents useful in cancer photochemotherapy

    Phytochemical Profile and In Vitro Antioxidant and Photobiological Properties of Different Extracts from <i>Prangos ferulacea</i> Lindl.

    No full text
    Interesting photobiological properties have been demonstrated for some Cachrys species, including C. libanotis L., C. sicula L., and C. pungens Jan. The present study was designed to assess the photocytotoxic activity of Prangos ferulacea Lindl. (synonym of C. ferulacea (L.) Calest.). This plant was previously considered a Cachrys species but, at present, it is part of the Prangos genus. P. ferulacea is an orophilous plant present in the eastern Mediterranean and in western Asia. Three different extraction techniques were utilized. Obtained extracts were compared both for their phytochemical content and for their photobiological properties on human melanoma cells irradiated with UVA light. The apoptotic responses, together with the antioxidant activity, were also assessed. P. ferulacea extracts were able to affect cell viability in a concentration-dependent manner, with the sample obtained through supercritical CO2 extraction showing the highest activity (IC50 = 4.91 μg/mL). This research points out the interesting content in the photoactive compounds of this species, namely furanocoumarins, and could provide a starting point for further studies aimed at finding new photosensitizing agents useful in cancer photochemotherapy
    corecore