375 research outputs found

    Reduced in vitro susceptibility to artemisinin derivatives associated with multi-resistance in a traveller returning from South-East Asia

    Get PDF
    Decreased in vitro susceptibility to dihydroartemisinin (21.2 nM) and artesunate (16.3 nM) associated with decreased susceptibility or resistance to quinine (1131 nM), mefloquine (166 nM), lumefantrine (114 nM), pyronaridine (70.5 nM) and piperaquine (91.1 nM) is reported in a patient returning from South-East Asia after trekking along the Mekong from the south of Laos to the north of Thailand. Decreased in vitro susceptibility to artemisinin derivatives did not appear to be mediated by the number of copies of pfmdr1 or pfATPase6, pfcrt, pfmdr1 or pfmrp polymorphism. The high IC50 to mefloquine of this Asian isolate was not associated with pfmdr1 copy number. Pfnhe-1 microsatellite ms4760 showed a profile 7 (ms4760-7) with three repeats of DNNND and one repeat of DDDNHNDNHNN, which is associated with high quinine reduced susceptibility. The patient recovered in three days without relapse after treatment with the association of quinine and doxycycline. Decreased in vitro susceptibility to quinine and the delayed effect of doxycycline may both have contributed to the delayed parasite clearance time, D4 (0.5%) and D7 (0.004%). The in vitro data, with IC50 for dihydroartemisinin and artesunate were up to ten times those of the reference clone W2, which suggests that this isolate may be resistant to artemisinin derivatives, associated with a decreased susceptibility to quinine

    Sentinel network for monitoring in vitro susceptibility of Plasmodium falciparum to antimalarial drugs in Colombia: a proof of concept

    Get PDF
    Drug resistance is one of the principal obstacles blocking worldwide malaria control. In Colombia, malaria remains a major public health concern and drug-resistant parasites have been reported. In vitro drug susceptibility assays are a useful tool for monitoring the emergence and spread of drug-resistant Plasmodium falciparum. The present study was conducted as a proof of concept for an antimalarial drug resistance surveillance network based on in vitro susceptibility testing in Colombia. Sentinel laboratories were set up in three malaria endemic areas. The enzyme linked immunosorbent assay-histidine rich protein 2 and schizont maturation methods were used to assess the susceptibility of fresh P. falciparum isolates to six antimalarial drugs. This study demonstrates that an antimalarial drug resistance surveillance network based on in vitro methods is feasible in the field with the participation of a research institute, local health institutions and universities. It could also serve as a model for a regional surveillance network. Preliminary susceptibility results showed widespread chloroquine resistance, which was consistent with previous reports for the Pacific region. However, high susceptibility to dihydroartemisinin and lumefantrine compounds, currently used for treatment in the country, was also reported. The implementation process identified critical points and opportunities for the improvement of network sustainability strategies.PAHO [057-1-3144141]; COLCIENCIAS [ID 2229-405-20319]info:eu-repo/semantics/publishedVersio

    Plasmodium falciparum Gametocyte Carriage Is Associated with Subsequent Plasmodium vivax Relapse after Treatment

    Get PDF
    Mixed P. falciparum/P. vivax infections are common in southeast Asia. When patients with P. falciparum malaria are treated and followed for several weeks, a significant proportion will develop P. vivax malaria. In a combined analysis of 243 patients recruited to two malaria treatment trials in western Cambodia, 20/43 (47%) of those with P. falciparum gametocytes on admission developed P. vivax malaria by Day 28 of follow-up. The presence of Pf gametocytes on an initial blood smear was associated with a 3.5-fold greater rate of vivax parasitemia post-treatment (IRR = 3.5, 95% CI 2.0–6.0, p<0.001). The increased rate of post-treatment P. vivax infection persisted when correlates of exposure and immunity such as a history of malaria, male gender, and age were controlled for (IRR = 3.0, 95% CI 1.9–4.7, p<0.001). Polymerase chain reaction (PCR) confirmed that only a low proportion of subjects (5/55 or 9.1%) who developed vivax during follow-up had detectable Pv parasites in the peripheral blood at baseline. Molecular detection of falciparum gametocytes by reverse transcriptase PCR in a subset of patients strengthened the observed association, while PCR detection of Pv parasitemia at follow-up was similar to microscopy results. These findings suggest that the majority of vivax infections arising after treatment of falciparum malaria originate from relapsing liver-stage parasites. In settings such as western Cambodia, the presence of both sexual and asexual forms of P. falciparum on blood smear at presentation with acute falciparum malaria serves as a marker for possible occult P. vivax coinfection and subsequent relapse. These patients may benefit from empiric treatment with an 8-aminoquinolone such as primaquine

    Febrile Illness Management in Children under Five Years of Age: A Qualitative Pilot Study on Primary Health Care Workers' Practices in Zanzibar.

    Get PDF
    In Zanzibar, malaria prevalence dropped substantially in the last decade and presently most febrile patients seen in primary health care facilities (PHCF) test negative for malaria. The availability of rapid diagnostic tests (RDTs) allows rural health workers to reliably rule out malaria in fever patients. However, additional diagnostic tools to identify alternative fever causes are scarce, often leaving RDT-negative patients without a clear diagnosis and management plan. This pilot study aimed to explore health workers' practices with febrile children and identify factors influencing their diagnostic and management decisions in non-malarial fever patients. Semi-structured key informant interviews were conducted with 12 health workers in six PHCFs in North A district, Zanzibar, April to June 2011. Interviews were coded using Atlas.ti to identify emerging themes that play a role in the diagnosis and management of febrile children. The following themes were identified: 1) health workers use caregivers' history of illness and RDT results for initial diagnostic and management decisions, but suggest caregivers need more education to prevent late presentation and poor health outcomes; 2) there is uncertainty regarding viral versus bacterial illness and health workers feel additional point-of-care diagnostic tests would help with differential diagnoses; 3) stock-outs of medications and limited caregivers' resources are barriers to delivering good care; 4) training, short courses and participation in research as well as; 5) weather also influences diagnostic decision-making. This pilot study found that health workers in Zanzibar use caregiver history of fever and results of malaria RDTs to guide management of febrile children. However, since most febrile children test negative for malaria, health workers believe additional training and point-of-care tests would improve their ability to diagnose and manage non-malarial fevers. Educating caregivers on signs and symptoms of febrile illness, as well as the introduction of additional tests to differentiate between viral and bacterial illness, would be important steps to get children to PHCFs earlier and decrease unnecessary antibiotic prescribing without compromising patient safety. More research is needed to expand an understanding of what would improve fever management in other resource-limited settings with decreasing malaria

    Molecular assays for antimalarial drug resistance surveillance: A target product profile.

    Get PDF
    Antimalarial drug resistance is a major constraint for malaria control and elimination efforts. Artemisinin-based combination therapy is now the mainstay for malaria treatment. However, delayed parasite clearance following treatment with artemisinin derivatives has now spread in the Greater Mekong Sub region and may emerge or spread to other malaria endemic regions. This spread is of great concern for malaria control programmes, as no alternatives to artemisinin-based combination therapies are expected to be available in the near future. There is a need to strengthen surveillance systems for early detection and response to the antimalarial drug resistance threat. Current surveillance is mainly done through therapeutic efficacy studies; however these studies are complex and both time- and resource-intensive. For multiple common antimalarials, parasite drug resistance has been correlated with specific genetic mutations, and the molecular markers associated with antimalarial drug resistance offer a simple and powerful tool to monitor the emergence and spread of resistant parasites. Different techniques to analyse molecular markers associated with antimalarial drug resistance are available, each with advantages and disadvantages. However, procedures are not adequately harmonized to facilitate comparisons between sites. Here we describe the target product profiles for tests to analyse molecular markers associated with antimalarial drug resistance, discuss how use of current techniques can be standardised, and identify the requirements for an ideal product that would allow malaria endemic countries to provide useful spatial and temporal information on the spread of resistance

    Declining in efficacy of a three-day combination regimen of mefloquine-artesunate in a multi-drug resistance area along the Thai-Myanmar border

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Declining in clinical efficacy of artesunate-mefloquine combination has been documented in areas along the eastern border (Thai-Cambodian) of Thailand. In the present study, the clinical efficacy of the three-day combination regimen of artesunate-mefloquine as first-line treatment for acute uncomplicated falciparum malaria in Thailand was monitored in an area along the western border (Thai-Myanmar) of the country.</p> <p>Methods</p> <p>A total of 150 Burmese patients (85 males and 65 females) aged between 16 and 50 years who were attending the Mae Tao clinic, Mae-Sot, Tak Province, and presenting with symptomatic acute uncomplicated <it>Plasmodium falciparum </it>malaria were included into the study. Patients were treated initially (day 0) with 4 mg/kg body weight artesunate and 15 mg/kg body weight mefloquine. The dose regimen on day 2 was 4 mg/kg body weight artesunate and 10 mg/kg body weight mefloquine. On day 3, artesunate at the dose of 4 mg/kg body weight was given with 0.6 mg/kg body weight primaquine. Whole blood mefloquine and plasma artesunate and dihydroartemisinin (active plasma metabolite of artesunate) concentrations following treatment were determined by high performance liquid chromatography (HPLC) and liquid chromatography-mass spectrometry (LCMS), respectively.</p> <p>Results</p> <p>Thirty-four cases had recrudescence during days 7 and 42. Five and 5 cases, respectively had reinfection with <it>P. falciparum </it>and reappearance of <it>Plasmodium vivax </it>in their peripheral blood during follow-up. The Kaplan-Meier estimate of the 42-and 28-day efficacy rates of this combination regimen were 72.58% (95% CI: 63.20-79.07%) and 83.06 (95% CI 76.14-94.40%), respectively. Parasite clearance time (PCT) and fever clearance time (FCT) were significantly prolonged in patients with treatment failure compared with those with sensitive response [median (95% CI) values for PCT 32.0 (20.0-48.0) <it>vs </it>24.0 (14.0-32.0) hr and FCT 30.0 (22.0-42.0) <it>vs </it>26.0 (18.0-36.0) hr; <it>p </it>< 0.005]. Whole blood mefloquine concentrations on days 1, 7 and 14 in patients with sensitive and recrudescence response were comparable. Although plasma concentration of dihydroartemisinin at 1 hour of treatment was significantly lower in patients with recrudescence compared with sensitive response [mean (95% CI) 456 (215-875) <it>vs </it>525 (452-599) ng/ml; <it>p </it>< 0.001], the proportion of patients with recrudescence who had relatively low (compared with the lower limit of 95% CI defined in the sensitive group) was significantly smaller than that of the sensitive group.</p> <p>Conclusions</p> <p>Although pharmacokinetic (ethnic-related) factors including resistance of <it>P. falciparum </it>to mefloquine contribute to some treatment failure following treatment with a three-day combination regimen of artesunate-mefloquine, results suggest that artesunate resistance may be emerging at the Thai-Myanmar border.</p

    Antimalarial Exposure Delays Plasmodium falciparum Intra-Erythrocytic Cycle and Drives Drug Transporter Genes Expression

    Get PDF
    BACKGROUND: Multi-drug resistant Plasmodium falciparum is a major obstacle to malaria control and is emerging as a complex phenomenon. Mechanisms of drug evasion based on the intracellular extrusion of the drug and/or modification of target proteins have been described. However, cellular mechanisms related with metabolic activity have also been seen in eukaryotic systems, e.g. cancer cells. Recent observations suggest that such mechanism may occur in P. falciparum. METHODOLOGY/PRINCIPAL FINDINGS: We therefore investigated the effect of mefloquine exposure on the cell cycle of three P. falciparum clones (3D7, FCB, W2) with different drug susceptibilities, while investigating in parallel the expression of four genes coding for confirmed and putative drug transporters (pfcrt, pfmdr1, pfmrp1 and pfmrp2). Mefloquine induced a previously not described dose and clone dependent delay in the intra-erythrocytic cycle of the parasite. Drug impact on cell cycle progression and gene expression was then merged using a non-linear regression model to determine specific drug driven expression. This revealed a mild, but significant, mefloquine driven gene induction up to 1.5 fold. CONCLUSIONS/SIGNIFICANCE: Both cell cycle delay and induced gene expression represent potentially important mechanisms for parasites to escape the effect of the antimalarial drug

    Availability and quality of anti-malarials among private sector outlets in Myanmar in 2012: results from a large, community-based, cross-sectional survey before a large-scale intervention

    Get PDF
    BACKGROUND: Global malaria control efforts are threatened by the spread and emergence of artemisinin-resistant Plasmodium falciparum parasites. In 2012, the widespread sale of partial courses of artemisinin-based monotherapy was suspected to take place in the highly accessed, weakly regulated private sector in Myanmar, posing potentially major threats to drug resistance. This study investigated the presence of artemisinin-based monotherapies in the Myanmar private sector, particularly as partial courses of therapy, to inform the targeting of future interventions to stop artemisinin resistance. METHODS: A large cross-sectional survey comprised of a screening questionnaire was conducted across 26 townships in Myanmar between March and May, 2012. For outlets that stocked anti-malarials at the time of survey, a stock audit was conducted, and for outlets that stocked anti-malarials within 3 months of the survey, a provider survey was conducted. RESULTS: A total of 3,658 outlets were screened, 83% were retailers (pharmacies, itinerant drug vendors and general retailers) and 17% were healthcare providers (private facilities and health workers). Of the 3,658 outlets screened, 1,359 outlets (32%) stocked at least one anti-malarial at the time of study. Oral artemisinin-based monotherapy comprised of 33% of self-reported anti-malarials dispensing volumes found. The vast majority of artemisinin-based monotherapy was sold by retailers, where 63% confirmed that they sold partial courses of therapy by cutting blister packets. Very few retailers (5%) had malaria rapid diagnostic tests available, and quality-assured artemisinin-based combination therapy was virtually nonexistent among retailers. CONCLUSION: Informal private pharmacies, itinerant drug vendors and general retailers should be targeted for interventions to improve malaria treatment practices in Myanmar, particularly those that threaten the emergence and spread of artemisinin resistance

    Comparison of PfHRP-2/pLDH ELISA, qPCR and microscopy for the detection of Plasmodium events and prediction of sick visits during a malaria vaccine study.

    Get PDF
    BACKGROUND: Compared to expert malaria microscopy, malaria biomarkers such as Plasmodium falciparum histidine rich protein-2 (PfHRP-2), and PCR provide superior analytical sensitivity and specificity for quantifying malaria parasites infections. This study reports on parasite prevalence, sick visits parasite density and species composition by different diagnostic methods during a phase-I malaria vaccine trial. METHODS: Blood samples for microscopy, PfHRP-2 and Plasmodium lactate dehydrogenase (pLDH) ELISAs and real time quantitative PCR (qPCR) were collected during scheduled (n = 298) or sick visits (n = 38) from 30 adults participating in a 112-day vaccine trial. The four methods were used to assess parasite prevalence, as well as parasite density over a 42-day period for patients with clinical episodes. RESULTS: During scheduled visits, qPCR (39.9%, N = 119) and PfHRP-2 ELISA (36.9%, N = 110) detected higher parasite prevalence than pLDH ELISA (16.8%, N = 50) and all methods were more sensitive than microscopy (13.4%, N = 40). All microscopically detected infections contained P. falciparum, as mono-infections (95%) or with P. malariae (5%). By qPCR, 102/119 infections were speciated. P. falciparum predominated either as monoinfections (71.6%), with P. malariae (8.8%), P. ovale (4.9%) or both (3.9%). P. malariae (6.9%) and P. ovale (1.0%) also occurred as co-infections (2.9%). As expected, higher prevalences were detected during sick visits, with prevalences of 65.8% (qPCR), 60.5% (PfHRP-2 ELISA), 21.1% (pLDH ELISA) and 31.6% (microscopy). PfHRP-2 showed biomass build-up that climaxed (1813±3410 ng/mL SD) at clinical episodes. CONCLUSION: PfHRP-2 ELISA and qPCR may be needed for accurately quantifying the malaria parasite burden. In addition, qPCR improves parasite speciation, whilst PfHRP-2 ELISA is a potential predictor for clinical disease caused by P. falciparum. TRIAL REGISTRATION: ClinicalTrials.gov NCT00666380
    • …
    corecore