33 research outputs found

    Comparative study of the stability of bimatoprost 0.03% and latanoprost 0.005%: A patient-use study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The stability of ophthalmic preparations in multidose containers is influenced by the preservative as well as the stability of the active ingredient. Unstable drugs may require refrigeration to preserve their active ingredient level and they are more likely to degrade over time, therefore becoming more susceptible to degradation based on patient mishandling. The purpose of this study was to determine the degree of molecular degradation that occurs in bimatoprost and latanoprost in a patient-use setting.</p> <p>Methods</p> <p>This was an open-label, laboratory evaluation of the relative stability of bimatoprost and latanoprost. Patients presently using bimatoprost (n = 31) or latanoprost (n = 34) were identified at 2 clinical sites in Brazil. Patients were instructed to use and store their drops as usual and return all used medication bottles between day 28 and day 34 after opening.</p> <p>Results</p> <p>Bimatoprost demonstrated no degradation, but latanoprost degraded at various levels. The mean age of bimatoprost was 43.0 ± 3.4 days and the mean age of latanoprost was 43.9 ± 2.8 days (P = .072). The mean percentage of labeled concentration was 103.7% in the bimatoprost bottles and 88.1% in the latanoprost bottles (P < 001).</p> <p>Conclusion</p> <p>This study showed that bimatoprost maintained ≥100% concentration throughout the study period while latanoprost did not.</p

    Effectiveness of ophthalmic solution preservatives: a comparison of latanoprost with 0.02% benzalkonium chloride and travoprost with the sofZia preservative system

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Although in vitro and in vivo laboratory studies have suggested that benzalkonium chloride (BAK) in topical ophthalmic solutions may be detrimental to corneal epithelial cells, multiple short- and long-term clinical studies have provided evidence supporting the safety of BAK. Despite the conflicting evidence, BAK is the most commonly used preservative in ophthalmic products largely due to its proven antimicrobial efficacy. This study was designed to characterize the antimicrobial performance of two commonly used topical ocular hypotensive agents that employ different preservative systems: latanoprost 0.005% with 0.02% BAK and travoprost 0.004% with sofZia, a proprietary ionic buffer system.</p> <p>Methods</p> <p>Each product was tested for antimicrobial effectiveness by <it>European Pharmacopoeia </it>A (EP-A) standards, the most stringent standards of the three major compendia, which specify two early sampling time points (6 and 24 hours) not required by the <it>United States Pharmacopeia </it>or <it>Japanese Pharmacopoeia</it>. Aliquots were inoculated with between 10<sup>5 </sup>and 10<sup>6 </sup>colony-forming units of the test organisms: <it>Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli, Candida albicans </it>and <it>Aspergillus brasiliensis</it>. Sampling and enumeration were conducted at protocol-defined time points through 28 days.</p> <p>Results</p> <p>BAK-containing latanoprost met EP-A criteria by immediately reducing all bacterial challenge organisms to the test sensitivity and fungal challenges within the first six hours while the preservative activity of travoprost with sofZia did not. Complete bacterial reduction by travoprost with sofZia was not shown until seven days into the test, and fungal reduction never exceeded the requisite 2 logs during the 28-day test. Travoprost with sofZia also did not meet EP-B criteria due to its limited effectiveness against <it>Staphylococcus aureus</it>. Both products satisfied United States and Japanese pharmacopoeial criteria.</p> <p>Conclusions</p> <p>Latanoprost with 0.02% BAK exhibited more effective microbial protection than travoprost with sofZia using rates of microbial reduction, time to no recovery for all challenges and evaluation against EP-A criteria as measures. The rapid and complete reduction of all microbial challenges demonstrates that antimicrobial activity of latanoprost with 0.02% BAK exceeds that of travoprost with sofZia preservative system in these products and provides a more protective environment in the event of contamination and subsequent exposure to microorganisms during use.</p

    Performing meta-analysis with incomplete statistical information in clinical trials

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Results from clinical trials are usually summarized in the form of sampling distributions. When full information (mean, SEM) about these distributions is given, performing meta-analysis is straightforward. However, when some of the sampling distributions only have mean values, a challenging issue is to decide how to use such distributions in meta-analysis. Currently, the most common approaches are either ignoring such trials or for each trial with a missing SEM, finding a similar trial and taking its SEM value as the missing SEM. Both approaches have drawbacks. As an alternative, this paper develops and tests two new methods, the first being the prognostic method and the second being the interval method, to estimate any missing SEMs from a set of sampling distributions with full information. A merging method is also proposed to handle clinical trials with partial information to simulate meta-analysis.</p> <p>Methods</p> <p>Both of our methods use the assumption that the samples for which the sampling distributions will be merged are randomly selected from the same population. In the prognostic method, we predict the missing SEMs from the given SEMs. In the interval method, we define intervals that we believe will contain the missing SEMs and then we use these intervals in the merging process.</p> <p>Results</p> <p>Two sets of clinical trials are used to verify our methods. One family of trials is on comparing different drugs for reduction of low density lipprotein cholesterol (LDL) for Type-2 diabetes, and the other is about the effectiveness of drugs for lowering intraocular pressure (IOP). Both methods are shown to be useful for approximating the conventional meta-analysis including trials with incomplete information. For example, the meta-analysis result of Latanoprost versus Timolol on IOP reduction for six months provided in <abbrgrp><abbr bid="B1">1</abbr></abbrgrp> was 5.05 ± 1.15 (Mean ± SEM) with full information. If the last trial in this study is assumed to be with partial information, the traditional analysis method for dealing with incomplete information that ignores this trial would give 6.49 ± 1.36 while our prognostic method gives 5.02 ± 1.15, and our interval method provides two intervals as Mean ∈ [4.25, 5.63] and SEM ∈ [1.01, 1.24].</p> <p>Conclusion</p> <p>Both the prognostic and the interval methods are useful alternatives for dealing with missing data in meta-analysis. We recommend clinicians to use the prognostic method to predict the missing SEMs in order to perform meta-analysis and the interval method for obtaining a more cautious result.</p
    corecore