284 research outputs found

    Multi-locus sequence typing of Salmonella enterica subsp. enterica serovar Enteritidis strains in Japan between 1973 and 2004

    Get PDF
    Salmonella enterica subsp. enterica serovar Enteritidis (S. Enteritidis) was responsible for a worldwide pandemic during the 1980s and 1990s; however, changes in the dominant lineage before and after this event remain unknown. This study determined S. Enteritidis lineages before and after this pandemic event in Japan using multilocus sequence typing (MLST). Thirty S. Enteritidis strains were collected in Japan between 1973 and 2004, consisting of 27 human strains from individual episodes, a bovine strain, a liquid egg strain and an eggshell strain. Strains showed nine phage types and 17 pulsed-field profiles with pulsed-field gel electrophoresis. All strains had homologous type 11 sequences without any nucleotide differences in seven housekeeping genes. These MLST results suggest that S. Enteritidis with the diversities revealed by phage typing and pulsed-field profiling has a highly clonal population. Although type 11 S. Enteritidis may exhibit both pleiotropic surface structure and pulsed-field type variation, it is likely to be a stable lineage derived from an ancestor before the 1980s and/or 1990s pandemic in Japan

    Defect in Synaptic Vesicle Precursor Transport and Neuronal Cell Death in KIF1A Motor Protein–deficient Mice

    Get PDF
    The nerve axon is a good model system for studying the molecular mechanism of organelle transport in cells. Recently, the new kinesin superfamily proteins (KIFs) have been identified as candidate motor proteins involved in organelle transport. Among them KIF1A, a murine homologue of unc-104 gene of Caenorhabditis elegans, is a unique monomeric neuron– specific microtubule plus end–directed motor and has been proposed as a transporter of synaptic vesicle precursors (Okada, Y., H. Yamazaki, Y. Sekine-Aizawa, and N. Hirokawa. 1995. Cell. 81:769–780). To elucidate the function of KIF1A in vivo, we disrupted the KIF1A gene in mice. KIF1A mutants died mostly within a day after birth showing motor and sensory disturbances. In the nervous systems of these mutants, the transport of synaptic vesicle precursors showed a specific and significant decrease. Consequently, synaptic vesicle density decreased dramatically, and clusters of clear small vesicles accumulated in the cell bodies. Furthermore, marked neuronal degeneration and death occurred both in KIF1A mutant mice and in cultures of mutant neurons. The neuronal death in cultures was blocked by coculture with wild-type neurons or exposure to a low concentration of glutamate. These results in cultures suggested that the mutant neurons might not sufficiently receive afferent stimulation, such as neuronal contacts or neurotransmission, resulting in cell death. Thus, our results demonstrate that KIF1A transports a synaptic vesicle precursor and that KIF1A-mediated axonal transport plays a critical role in viability, maintenance, and function of neurons, particularly mature neurons

    Cav2.3 (α1E) Ca2+ channel participates in the control of sperm function

    Get PDF
    AbstractTo know the function of the Ca2+ channel containing α12.3 (α1E) subunit (Cav2.3 channel) in spermatozoa, we analyzed Ca2+ transients and sperm motility using a mouse strain lacking Cav2.3 channel. The averaged rising rates of Ca2+ transients induced by α-D-mannose–bovine serum albumin in the head region of Cav2.3−/− sperm were significantly lower than those of Cav2.3+/+ sperm. A computer-assisted sperm motility assay revealed that straight-line velocity and linearity were greater in Cav2.3−/− sperm than those in Cav2.3+/+ sperm. These results suggest that the Cav2.3 channel plays some roles in Ca2+ transients and the control of flagellar movement

    Somatic chromosomal translocation between Ewsr1 and Fli1 loci leads to dilated cardiomyopathy in a mouse model

    Get PDF
    A mouse model that recapitulates the human Ewing's sarcoma-specific chromosomal translocation was generated utilizing the Cre/loxP-mediated recombination technique. A cross between Ewsr1-loxP and Fli1-loxP mice and expression of ubiquitous Cre recombinase induced a specific translocation between Ewsr1 and Fli1 loci in systemic organs of both adult mice and embryos. As a result Ewsr1-Fli1 fusion transcripts were expressed, suggesting a functional Ews-Fli1 protein might be synthesized in vivo. However, by two years of age, none of the Ewsr1-loxP/Fli1-loxP/CAG-Cre (EFCC) mice developed any malignancies, including Ewing-like small round cell sarcoma. Unexpectedly, all the EFCC mice suffered from dilated cardiomyopathy and died of chronic cardiac failure. Genetic recombination between Ewsr1 and Fli1 was confirmed in the myocardial tissue and apoptotic cell death of cardiac myocytes was observed at significantly higher frequency in EFCC mice. Moreover, expression of Ews-Fli1 in the cultured cardiac myocytes induced apoptosis. Collectively, these results indicated that ectopic expression of the Ews-Fli1 oncogene stimulated apoptotic signals, and suggested an important relationship between oncogenic signals and cellular context in the cell-of-origin of Ewing's sarcoma
    • …
    corecore