94 research outputs found

    Scalable Causal Discovery with Score Matching

    Get PDF
    This paper demonstrates how to discover the whole causal graph from the second derivative of the log-likelihood in observational nonlinear additive Gaussian noise models. Leveraging scalable machine learning approaches to approximate the score function ∇log p(X), we extend the work of Rolland et al. (2022) that only recovers the topological order from the score and requires an expensive pruning step removing spurious edges among those admitted by the ordering. Our analysis leads to DAS (acronym for Discovery At Scale), a practical algorithm that reduces the complexity of the pruning by a factor proportional to the graph size. In practice, DAS achieves competitive accuracy with current state-of-the-art while being over an order of magnitude faster. Overall, our approach enables principled and scalable causal discovery, significantly lowering the compute bar

    Causal Discovery with Score Matching on Additive Models with Arbitrary Noise

    Get PDF
    Causal discovery methods are intrinsically constrained by the set of assumptions needed to ensure structure identifiability. Moreover additional restrictions are often imposed in order to simplify the inference task: this is the case for the Gaussian noise assumption on additive nonlinear models, which is common to many causal discovery approaches. In this paper we show the shortcomings of inference under this hypothesis, analyzing the risk of edge inversion under violation of Gaussianity of the noise terms. Then, we propose a novel method for inferring the topological ordering of the variables in the causal graph, from data generated according to an additive nonlinear model with a generic noise distribution. This leads to NoGAM (Not only Gaussian Additive noise Models), a causal discovery algorithm with a minimal set of assumptions and state of the art performance, experimentally benchmarked on synthetic data

    Smart rogaining for computer science orientation

    Get PDF
    In this paper, we address the problem of designing new formats of computer science orientation activities to be offered during high school students internships in Computer Science Bachelor degrees. In order to cover a wide range of computer science topics as well to deal with soft skills and gender gap issues, we propose a teamwork format, called smart rogaining, that offer engaging introductory activities to prospective students in a series of checkpoints dislocated along the different stages of a rogaine. The format is supported by a smart mobile and web application. Our proposal is aimed at stimulating the interest of participants in different areas of computer science and at improving digital and soft skills of participants and, as a side effect, of staff members (instructors and university students). In the paper, we introduce the proposed format and discuss our experience in the editions organized at the University of Genoa before the COVID-19 pandemic (2019 and 2020 waves)

    Using Object Affordances to Improve Object Recognition

    Full text link

    Structure, Function, and Modification of the Voltage Sensor in Voltage-Gated Ion Channels

    Full text link
    corecore