103 research outputs found

    JTT-553, a novel Acyl CoA:diacylglycerol acyltransferase (DGAT) 1 inhibitor, improves glucose metabolism in diet-induced obesity and genetic T2DM mice

    Get PDF
    AbstractType 2 diabetes mellitus (T2DM) arises primarily due to lifestyle factors and genetics. A number of lifestyle factors are known to be important in the development of T2DM, including obesity. JTT-553, a novel Acyl CoA:diacylglycerol acyltransferase 1 inhibitor, reduced body weight depending on dietary fat in diet-induced obesity (DIO) rats in our previous study. Here, the effect of JTT-553 on glucose metabolism was evaluated using body weight reduction in T2DM mice.JTT-553 was repeatedly administered to DIO and KK-Ay mice. JTT-553 reduced body weight gain and fat weight in both mouse models. In DIO mice, JTT-553 decreased insulin, non-esterified fatty acid (NEFA), total cholesterol (TC), and liver triglyceride (TG) plasma concentrations in non-fasting conditions. JTT-553 also improved insulin-dependent glucose uptake in adipose tissues and glucose intolerance in DIO mice. In KK-Ay mice, JTT-553 decreased glucose, NEFA, TC and liver TG plasma concentrations in non-fasting conditions. JTT-553 also decreased glucose, insulin, and TC plasma concentrations in fasting conditions. In addition, JTT-553 decreased TNF-α mRNA levels and increased GLUT4 mRNA levels in adipose tissues in KK-Ay mice.These results suggest that JTT-553 improves insulin resistance in adipose tissues and systemic glucose metabolism through reductions in body weight

    Diabetes mellitus itself increases cardio- cerebrovascular risk and renal complications in primary aldosteronism

    Full text link
    This is a pre-copyedited, author-produced version of an article accepted for publication in The Journal of Clinical Endocrinology & Metabolism following peer review. The version of record Aya Saiki, Michio Otsuki, Daisuke Tamada, Tetsuhiro Kitamura, Iichiro Shimomura, Isao Kurihara, Takamasa Ichijo, Yoshiyu Takeda, Takuyuki Katabami, Mika Tsuiki, Norio Wada, Toshihiko Yanase, Yoshihiro Ogawa, Junji Kawashima, Masakatsu Sone, Nobuya Inagaki, Takanobu Yoshimoto, Ryuji Okamoto, Katsutoshi Takahashi, Hiroki Kobayashi, Kouichi Tamura, Kohei Kamemura, Koichi Yamamoto, Shoichiro Izawa, Miki Kakutani, Masanobu Yamada, Akiyo Tanabe, Mitsuhide Naruse, Diabetes Mellitus Itself Increases Cardio-Cerebrovascular Risk and Renal Complications in Primary Aldosteronism, The Journal of Clinical Endocrinology & Metabolism, Volume 105, Issue 7, July 2020, Pages e2531–e2537 is available online at: https://doi.org/10.1210/clinem/dgaa177

    Catalytic asymmetric synthesis of the pentacyclic core of (-)-nakadomarin A via oxazolidine as an iminium cation equivalent.

    Get PDF
    A facile and catalytic asymmetric synthesis of the pentacyclic core of (-)-nakadomarin A, containing all the stereogenic centers of the natural product was achieved. The key intermediate involves the oxazolidine moiety as an iminium cation equivalent. An efficient method for the removal of the N-hydroxyethyl group is also described
    corecore