23 research outputs found

    Regulation of Th2 responses by different cell types expressing the interleukin-31 receptor

    No full text
    Abstract Background Interleukin-31 (IL-31) is a recently identified cytokine produced by Th2 cells that is involved in the development of atopic dermatitis-induced skin inflammation and pruritus. Its receptor, IL-31RA, is expressed by a number of cell types, including epithelial cells, eosinophils, and activated monocytes and macrophages. To date, however, the regulation of Th2 responses by distinct cell types and tissues expressing IL-31RA has not been well studied. Methods In this study, Cry j 2, one of the major allergens of Japanese cedar pollen, was administered to IL-31RA-deficient or wild-type (WT) mice via nasal or intraperitoneal injection for induction of specific Th2 responses. Results After nasal administration of Cry j 2, IL-31RA-deficient mice showed lower Cry j 2-specific CD4+ T cell proliferation, Th2 cytokine (IL-5 and IL-13) production, and Th2-mediated (IgE, IgG1, and IgG2b) antibody responses than WT mice. In contrast, IL-31RA-deficient mice administered Cry j 2 intraperitoneally showed stronger Th2 immune responses than WT mice. Conclusions These results indicate that IL-31R signaling positively regulates Th2 responses induced by nasal administration of Cry j 2, but negatively regulates these responses when Cry j 2 is administered intraperitoneally. Collectively, these data indicate that the induction of antigen-specific Th2 immune responses might depend on tissue-specific cell types expressing IL-31RA

    Recording the Fragrance of 15 Types of Medicinal Herbs and Comparing Them by Similarity Using the Electronic Nose FF-2A

    No full text
    Medical herbs have been recognized till now as having different constituents that act on the human body. However, the fragrance of herbs is a complex mixture of odors, which makes it difficult to qualify or quantify the scent objectively on the human sense of smell. In this study, aromas of 15 medicinal herbs were recorded using an electronic nose FF-2A, and their characteristics were compared with aroma samples of wine such as Le Nez du Vin, to determine which wine aromas are similar to each medicinal herb. Thereafter, the aromas of the 15 herbs were standardized to create a reference axis for the aroma of each herb, and the similarity of tea herbs to the reference axis was examined. Additionally, the results were compared with those obtained by gas chromatography-mass spectrometry (GC-MS). In FF-2A, the measured scent is recorded as an absolute value. We succeeded in calculating the similarity of the scents of other herbs with the axes of the scent of each herb by standardizing their scents and creating new axis data. Conversely, although GC-MS is able to identify the components and concentrations of fragrances, an electronic nose can analyze fragrances in a way that is uncommon with GC-MS, such as comparison of similarities between fragrances

    Recording the Fragrance of 15 Types of Medicinal Herbs and Comparing Them by Similarity Using the Electronic Nose FF-2A

    No full text
    Medical herbs have been recognized till now as having different constituents that act on the human body. However, the fragrance of herbs is a complex mixture of odors, which makes it difficult to qualify or quantify the scent objectively on the human sense of smell. In this study, aromas of 15 medicinal herbs were recorded using an electronic nose FF-2A, and their characteristics were compared with aroma samples of wine such as Le Nez du Vin, to determine which wine aromas are similar to each medicinal herb. Thereafter, the aromas of the 15 herbs were standardized to create a reference axis for the aroma of each herb, and the similarity of tea herbs to the reference axis was examined. Additionally, the results were compared with those obtained by gas chromatography-mass spectrometry (GC-MS). In FF-2A, the measured scent is recorded as an absolute value. We succeeded in calculating the similarity of the scents of other herbs with the axes of the scent of each herb by standardizing their scents and creating new axis data. Conversely, although GC-MS is able to identify the components and concentrations of fragrances, an electronic nose can analyze fragrances in a way that is uncommon with GC-MS, such as comparison of similarities between fragrances
    corecore