17 research outputs found

    Chronic irradiation with low-dose-rate ¹³⁷Cs-γ rays inhibits NGF-induced neurite extension of PC12 cells via Ca²⁺/calmodulin-dependent kinase II activation

    Get PDF
    Chronic irradiation with low-dose-rate ¹³⁷Cs-γ rays inhibits the differentiation of human neural progenitor cells and influences the expression of proteins associated with several cellular functions. We aimed to determine whether such chronic irradiation influences the expression of proteins associated with PC12 cells. Chronic irradiation at 0.027 mGy/min resulted in inhibition of NGF-induced neurite extension. Furthermore, irradiation enhanced the nerve growth factor (NGF)-induced increase in the phosphorylation of extracellular signal–regulated kinase (ERK), but did not affect the phosphorylation of NGF receptors, suggesting that irradiation influences pathways unassociated with the activation of ERK. We then examined whether irradiation influenced the Akt−Rac1 pathway, which is unaffected by ERK activation. Chronic irradiation also enhanced the NGF-induced increase in Akt phosphorylation, but markedly inhibited the NGF-induced increase in Rac1 activity that is associated with neurite extension. These results suggest that the inhibitory effect of irradiation on neurite extension influences pathways unassociated with Akt activation. As Ca²⁺ /calmodulin-dependent kinase II (CaMKII) is known to inhibit the NGF-induced neurite extension in PC12 cells, independent of ERK and Akt activation, we next examined the effects of irradiation on CaMKII activation. Chronic irradiation induced CaMKII activation, while application of KN-62 (a specific inhibitor of CaMKII), attenuated increases in CaMKII activation and recovered neurite extension and NGF-induced increases in Rac1 activity that was inhibited by irradiation. Our results suggest that chronic irradiation with low-dose-rate γ-rays inhibits Rac1 activity via CaMKII activation, thereby inhibiting NGF-induced neurite extension

    Inhibition of nerve growth factor-induced neurite outgrowth from PC12 cells by dexamethasone: signaling pathways through the glucocorticoid receptor and phosphorylated Akt and ERK1/2.

    No full text
    Glucocorticoids are important mediators of the stress response and are commonly employed as drugs for the suppression of immune rejection after organ transplantation. Previous investigations uncovered the possibility of mood depression in patients undergoing long-term treatment with synthetic glucocorticoids, including dexamethasone (DEX). Exogenous glucocorticoids and their synthetic derivatives can also adversely affect the development of the central nervous system. Although neurite extension from rat pheochromocytoma-derived PC12 cells and a variety of primary neurons is stimulated by nerve growth factor (NGF), and signaling pathways triggered by the binding of NGF to tyrosine kinase receptor type 1 (TrkA) function in both neurite outgrowth and neuronal survival, the effect of DEX on the activation of regulatory proteins and pathways downstream of TrkA has not been well characterized. To analyze the influence of DEX on NGF-induced neurite outgrowth and signaling, PC12 cells, a widely utilized model of neuronal differentiation, were pretreated with the glucocorticoid prior to NGF induction. NGF-induced neurite outgrowth was attenuated by pretreatment with DEX, even in the absence of DEX after the addition of NGF. Moreover, DEX suppressed the phosphorylation of Akt and extracellular-regulated kinase 1/2 (ERK1/2) in the neurite outgrowth signaling cascade initiated by NGF. Finally, the glucocorticoid receptor (GR) antagonist, RU38486, counteracted the inhibitory effect of DEX pretreatment, not only on the phosphorylation of Akt and ERK1/2, but also on neurite extension from PC12 cells. These results suggest that DEX binding to the GR impairs NGF-promoted neurite outgrowth by interfering with the activation/phosphorylation of Akt and ERK1/2. These novel findings are likely to be useful for elucidating the central nervous system depressive mechanism(s) of action of DEX and other glucocorticoids

    Anti-Osteoporotics for New Century: Now and Then

    No full text

    Human Recombinant Lactoferrin Promotes Differentiation and Calcification on MC3T3-E1 Cells

    No full text
    Lactoferrin (LF), known to be present in mammalian milk, has been reported to promote the proliferation of osteoblasts and suppress bone resorption by affecting osteoclasts. However, the mechanisms underlying the effects of human sources LF on osteoblast differentiation have not yet been elucidated, and almost studies have used LF from bovine sources. The presented study aimed to characterize the molecular mechanisms of bovine lactoferrin (IF-I) and human recombinant lactoferrin (LF-II) on MC3T3-E1 pre-osteoblast cells. MC3T3-E1 cells were treated with LF, ascorbic acid, and β-glycerophosphate (β-GP). Cell proliferation was analyzed using the MTT assay. Alkaline phosphatase activation and osteopontin expression levels were evaluated via cell staining and immunocytochemistry. The differentiation markers were examined using quantitative real-time PCR. The cell viability assay showed the treatment of 100 μg/mL LF significantly increased; however, it was suppressed by the simultaneous treatment of ascorbic acid and β-GP. Alizarin red staining showed that the 100 μg/mL treatment of LF enhanced calcification. Quantitative real-time PCR showed a significant increase in osterix expression. The results suggest that treatment with both LFs enhanced MC3T3-E1 cell differentiation and promoted calcification. The mechanisms of calcification suggest that LFs are affected by an increase in osterix and osteocalcin mRNA levels

    Effect of the antidiabetic agent pioglitazone on bone metabolism in rats

    No full text
    Thiazolidinediones (TZDs) are synthetic peroxisome proliferator-activated receptor gamma (PPARγ) agonists used as therapy for type 2 diabetes. However, clinical studies reported that the therapeutic modulation of PPARγ activity using TZDs may induce negative effects on bone metabolism. This study aimed to evaluate the effect of the TZD pioglitazone on bone metabolism in rats. Male Wistar rats were treated orally with pioglitazone 5 or 20 mg/kg daily for 24 weeks. Bone strength was evaluated using a 3-point bending method, and bone histomorphometry was analyzed. Bone mineral density (BMD) was measured using quantitative computed tomography, and serum biochemical markers were examined. Pioglitazone caused a decrease in cortical and trabecular BMD of whole femur. A reduction in bone strength properties of the femoral mid-diaphysis was observed in the 20 mg/kg pioglitazone treated group. Bone histomorphometric analysis revealed that osteoblast surface and mineralizing surface were decreased, whereas osteoclast surface and number were increased after treatment with 20 mg/kg pioglitazone. Altogether, this study demonstrated that pioglitazone may repress bone formation and facilitate bone resorption. The resulting imbalance of bone metabolism leads to a reduction in BMD with a subsequent increase in bone fragility
    corecore