27 research outputs found
The inhibitory effects of Orengedokuto on inducible PGE2 production in BV-2 microglial cells
[Background and aim] Reactive microglia has been associated with neuroinflammation caused by the production of proinflammatory molecules such as cytokines, nitric oxide, and prostaglandins. The overexpression of these molecules may provoke neuronal damage that can cause neurodegenerative diseases. A traditional herbal medicine, Orengedokuto (OGT), has been widely used for treating inflammation-related diseases. However, how it influences neuroinflammation remains poorly understood. [Experimental procedure] This study investigated the effects of OGT on inflammatory molecule induction in BV-2 microglial cells using real-time RT-PCR and ELISA. An in vivo confirmation of these effects was then performed in mice. [Results and conclusion] OGT showed dose-dependent inhibition of prostaglandin E2 (PGE2) production in BV-2 cells stimulated with lipopolysaccharide (LPS). To elucidate the mechanism of PGE2 inhibition, we examined cyclooxygenases (COXs) and found that OGT did not suppress COX-1 expression or inhibit LPS-induced COX-2 upregulation at either the transcriptional or translational levels. In addition, OGT did not inhibit COX enzyme activities within the concentration that inhibited PGE2 production, suggesting that the effect of OGT is COX-independent. The inhibitory effects of OGT on PGE2 production in BV-2 cells were experimentally replicated in primary cultured astrocytes and mice brains. OGT can be useful in the treatment of neuroinflammatory diseases by modulating PGE2 expression
Risk Factors of Household Transmission of Pandemic (H1N1) 2009 among Patients Treated with Antivirals: A Prospective Study at a Primary Clinic in Japan
Background: Household transmission of influenza can affect the daily lives of patients and their families and be a trigger for community transmission, thus it is necessary to take precautions to prevent household transmission. We aimed to determine the risks of household transmission of pandemic (H1N1) 2009 influenza virus from an index patient who visited a primary clinic and was treated with antiviral drugs. Methods: We followed up all the patients who were diagnosed with influenza A by rapid diagnostic test with a questionnaire or interview from July 2009 to April 2010. Secondary cases were defined as patients visiting the clinic or other clinics and being positive for influenza A by rapid diagnostic test within 7 days of onset of an index patient. Logistic regression analysis was used to explore the association between household transmission and the studied variables. Results: We recruited 591 index patients and 1629 household contacts. The crude secondary attack rate was 7.3 % [95% confidence interval (CI): 6.1–8.7]. Age of index patients (0–6 years old: odds ratio 2.56; 95 % CI: 1.31–4.01; 7–12 years old: 2.44, 1.31–3.72; 30–39 years old 3.88; 2.09–5.21; 40 years old or more 2.76; 1.17–4.53) and number of household members with five or more (3.09, 2.11–4.07), medication started 48 hours from the onset of fever (2.38, 1.17–3.87) were significantly associated with household transmission. Conclusions: Household transmission was associated with index patients aged #12 years old and adults 30 years wit
Characteristics of the index patients according to age group.
<p>CI; Confidence interval.</p
Association between household transmission and the studied variables.
<p>CI: confidence interval.</p><p>SAR: secondary attack rate.</p
Clinical and virologic effects of four neuraminidase inhibitors in influenza A virus-infected children (aged 4–12 years): an open-label, randomized study in Japan
<p><b>Background</b>: Neuraminidase inhibitors (NAIs) reduce influenza symptoms but clear evidence of relationships between viral titer reduction and symptom alleviation is lacking. This open-label, randomized study evaluated differences in viral dynamics between NAIs, and relationships between viral dynamics and influenza symptoms (trial registration number: UMIN000012670).</p> <p><b>Methods</b>: Patients (n = 123) aged 4–12 years with influenza A virus infection were randomized to intravenous peramivir, oral oseltamivir, inhaled zanamivir, or inhaled laninamivir. Patients received regular viral assessments of nasal discharge, at least until rapid antigen tests were negative. Time to virus clearance, based on influenza virus titer, was the primary endpoint.</p> <p><b>Results</b>: Peramivir recipients had a significantly shorter time to virus clearance than oseltamivir recipients (adjusted p = 0.035). Comparisons between the peramivir group and other NAI groups were not significant. There were no significant inter-group differences in other clinical efficacy endpoints (time to resolution of fever, time to alleviation of symptoms). However, the peramivir group showed a smaller numerical proportion of relapses with fever or positive virus than the other groups.</p> <p><b>Conclusions</b>: The time to virus clearance was significantly shorter with peramivir than with oseltamivir. Although no clear relationship between virus dynamics and symptoms was observed, ongoing studies should clarify the situation.</p
Baloxavir safety and clinical and virologic outcomes in influenza virus-infected pediatric patients by age group: age-based pooled analysis of two pediatric studies conducted in Japan
Abstract Background Anti-influenza treatment is important for children and is recommended in many countries. This study assessed safety, clinical, and virologic outcomes of baloxavir marboxil (baloxavir) treatment in children based on age and influenza virus type/subtype. Methods This was a post hoc pooled analysis of two open-label non-controlled studies of a single weight-based oral dose of baloxavir (day 1) in influenza virus-infected Japanese patients aged < 6 years (n = 56) and ≥ 6 to < 12 years (n = 81). Safety, time to illness alleviation (TTIA), time to resolution of fever (TTRF), recurrence of influenza illness symptoms and fever (after day 4), virus titer, and outcomes by polymerase acidic protein variants at position I38 (PA/I38X) were evaluated. Results Adverse events were reported in 39.0 and 39.5% of patients < 6 years and ≥ 6 to < 12 years, respectively. Median (95% confidence interval) TTIA was 43.2 (36.3–68.4) and 45.4 (38.9–61.0) hours, and TTRF was 32.2 (26.8–37.8) and 20.7 (19.2–23.8) hours, for patients < 6 years and ≥ 6 to < 12 years, respectively. Symptom and fever recurrence was more common in patients < 6 years with influenza B (54.5 and 50.0%, respectively) compared with older patients (0 and 25.0%, respectively). Virus titers declined (day 2) for both age groups. Transient virus titer increase and PA/I38X-variants were more common for patients < 6 years. Conclusions The safety and effectiveness of single-dose baloxavir were observed in children across all age groups and influenza virus types. Higher rates of fever recurrence and transient virus titer increase were observed in children < 6 years. Trial registration Japan Pharmaceutical Information Center Clinical Trials Information JapicCTI-163,417 (registered 02 November 2016) and JapicCTI-173,811 (registered 15 December 2017)
Expression, purification and preliminary X-ray characterization of dl-2-haloacid dehalogenase from Methylobacterium sp. CPA1
A recombinant form of dl-2-haloacid dehalogenase from Methylobacterium sp. CPA1 has been expressed in E. coli, purified and crystallized. The crystal belongs to space group P63. Diffraction data have been collected to 1.75 Å resolution
Phase III Randomized, Double-Blind Study Comparing Single-Dose Intravenous Peramivir with Oral Oseltamivir in Patients with Seasonal Influenza Virus Infection ▿ †
Antiviral medications with activity against influenza viruses are important in controlling influenza. We compared intravenous peramivir, a potent neuraminidase inhibitor, with oseltamivir in patients with seasonal influenza virus infection. In a multinational, multicenter, double-blind, double-dummy randomized controlled study, patients aged ≥20 years with influenza A or B virus infection were randomly assigned to receive either a single intravenous infusion of peramivir (300 or 600 mg) or oral administration of oseltamivir (75 mg twice a day [b.i.d.] for 5 days). To demonstrate the noninferiority of peramivir in reducing the time to alleviation of influenza symptoms with hazard model analysis and a noninferiority margin of 0.170, we planned to recruit 1,050 patients in South Korea, Japan, and Taiwan. A total of 1,091 patients (364 receiving 300 mg and 362 receiving 600 mg of peramivir; 365 receiving oseltamivir) were included in the intent-to-treat infected population. The median durations of influenza symptoms were 78.0, 81.0, and 81.8 h in the groups treated with 300 mg of peramivir, 600 mg of peramivir, and oseltamivir, respectively. The hazard ratios of the 300- and 600-mg-peramivir groups compared to the oseltamivir group were 0.946 (97.5% confidence interval [CI], 0.793, 1.129) and 0.970 (97.5% CI, 0.814, 1.157), respectively. Both peramivir groups were noninferior to the oseltamivir group (97.5% CI, <1.170). The overall incidence of adverse drug reactions was significantly lower in the 300-mg-peramivir group, but the incidence of severe reactions in either peramivir group was not different from that in the oseltamivir group. Thus, a single intravenous dose of peramivir may be an alternative to a 5-day oral dose of oseltamivir for patients with seasonal influenza virus infection