71 research outputs found

    Development of split-force-controlled body weight support (SF-BWS) robot for gait rehabilitation

    Get PDF
    This study introduces a body-weight-support (BWS) robot actuated by two pneumatic artificial muscles (PAMs). Conventional BWS devices typically use springs or a single actuator, whereas our robot has a split force-controlled BWS (SF-BWS), in which two force-controlled actuators independently support the left and right sides of the user’s body. To reduce the experience of weight, vertical unweighting support forces are transferred directly to the user’s left and right hips through a newly designed harness with an open space around the shoulder and upper chest area to allow freedom of movement. A motion capture evaluation with three healthy participants confirmed that the proposed harness does not impede upper-body motion during laterally identical force-controlled partial BWS walking, which is quantitatively similar to natural walking. To evaluate our SF-BWS robot, we performed a force-tracking and split-force control task using different simulated load weight setups (40, 50, and 60 kg masses). The split-force control task, providing independent force references to each PAM and conducted with a 60 kg mass and a test bench, demonstrates that our SF-BWS robot is capable of shifting human body weight in the mediolateral direction. The SF-BWS robot successfully controlled the two PAMs to generate the desired vertical support forces

    The whole blood transcriptional regulation landscape in 465 COVID-19 infected samples from Japan COVID-19 Task Force

    Get PDF
    「コロナ制圧タスクフォース」COVID-19患者由来の血液細胞における遺伝子発現の網羅的解析 --重症度に応じた遺伝子発現の変化には、ヒトゲノム配列の個人差が影響する--. 京都大学プレスリリース. 2022-08-23.Coronavirus disease 2019 (COVID-19) is a recently-emerged infectious disease that has caused millions of deaths, where comprehensive understanding of disease mechanisms is still unestablished. In particular, studies of gene expression dynamics and regulation landscape in COVID-19 infected individuals are limited. Here, we report on a thorough analysis of whole blood RNA-seq data from 465 genotyped samples from the Japan COVID-19 Task Force, including 359 severe and 106 non-severe COVID-19 cases. We discover 1169 putative causal expression quantitative trait loci (eQTLs) including 34 possible colocalizations with biobank fine-mapping results of hematopoietic traits in a Japanese population, 1549 putative causal splice QTLs (sQTLs; e.g. two independent sQTLs at TOR1AIP1), as well as biologically interpretable trans-eQTL examples (e.g., REST and STING1), all fine-mapped at single variant resolution. We perform differential gene expression analysis to elucidate 198 genes with increased expression in severe COVID-19 cases and enriched for innate immune-related functions. Finally, we evaluate the limited but non-zero effect of COVID-19 phenotype on eQTL discovery, and highlight the presence of COVID-19 severity-interaction eQTLs (ieQTLs; e.g., CLEC4C and MYBL2). Our study provides a comprehensive catalog of whole blood regulatory variants in Japanese, as well as a reference for transcriptional landscapes in response to COVID-19 infection

    DOCK2 is involved in the host genetics and biology of severe COVID-19

    Get PDF
    「コロナ制圧タスクフォース」COVID-19疾患感受性遺伝子DOCK2の重症化機序を解明 --アジア最大のバイオレポジトリーでCOVID-19の治療標的を発見--. 京都大学プレスリリース. 2022-08-10.Identifying the host genetic factors underlying severe COVID-19 is an emerging challenge. Here we conducted a genome-wide association study (GWAS) involving 2, 393 cases of COVID-19 in a cohort of Japanese individuals collected during the initial waves of the pandemic, with 3, 289 unaffected controls. We identified a variant on chromosome 5 at 5q35 (rs60200309-A), close to the dedicator of cytokinesis 2 gene (DOCK2), which was associated with severe COVID-19 in patients less than 65 years of age. This risk allele was prevalent in East Asian individuals but rare in Europeans, highlighting the value of genome-wide association studies in non-European populations. RNA-sequencing analysis of 473 bulk peripheral blood samples identified decreased expression of DOCK2 associated with the risk allele in these younger patients. DOCK2 expression was suppressed in patients with severe cases of COVID-19. Single-cell RNA-sequencing analysis (n = 61 individuals) identified cell-type-specific downregulation of DOCK2 and a COVID-19-specific decreasing effect of the risk allele on DOCK2 expression in non-classical monocytes. Immunohistochemistry of lung specimens from patients with severe COVID-19 pneumonia showed suppressed DOCK2 expression. Moreover, inhibition of DOCK2 function with CPYPP increased the severity of pneumonia in a Syrian hamster model of SARS-CoV-2 infection, characterized by weight loss, lung oedema, enhanced viral loads, impaired macrophage recruitment and dysregulated type I interferon responses. We conclude that DOCK2 has an important role in the host immune response to SARS-CoV-2 infection and the development of severe COVID-19, and could be further explored as a potential biomarker and/or therapeutic target

    Pages 224-241 Citation of the article: S. Fujita and N. Matsubara, Edge Configurations on a Regular Octahedron. Their Exhaustive Enumeration and Examination With Respect to Edge Numbers and Point-Group Symmetries

    No full text
    Abstract Motivation. The versatility of the USCI (unit-subduced-cycle-index) approach is demonstrated in characterizing the symmetries of octahedral complexes. Method. Edge configurations on a regular octahedron have been combinatorially enumerated by the PCI (partial-cycle-index) method, which is one of the four methods of the USCI approach. Results. Thereby, the complete set of edge configurations has been obtained, where all edge configurations are classified by virtue of two criteria, i.e., the numbers of edges and the point-group symmetries. The latter criterion enables us to examine chiral and achiral edge configurations, where complementary configurations are discussed in terms of the subductions of coset representations. Conclusions. The USCI approach provides a common tool to systematize inorganic stereochemistry as well as organic stereochemistry

    Basal wall hypercontraction of Takotsubo cardiomyopathy in a patient who had been diagnosed with dilated cardiomyopathy: a case report

    No full text
    Abstract Background Takotsubo cardiomyopathy is characterized by the basal hypercontractility and apical ballooning of the left ventriculum and T-wave inversion in the electrocardiogram. It has been suggested that Takotsubo cardiomyopathy might underlie the pathogenesis of persistent cardiac dysfunction; however, few reports are present demonstrating the advent of Takotsubo cardiomyopathy in patients with idiopathic cardiomyopathy. Case presentation A 64-year-old women was admitted due to dyspnea on effort and lower extremity edema. She had been diagnosed with idiopathic dilated cardiomyopathy 2.5 years before owing to the reduced left ventricular ejection fraction (24%), normal coronary artery, and interstitial fibrosis of the myocardial samples. On admission, her electrocardiogram showed giant negative T wave in II, III, aVF, and precordial leads. Echocardiography showed dyskinesis of the left ventricular apex and hypercontraction of the basal wall, which had not been observed in the previous examinations. Coronary angiography showed normal coronary arteries, and apical ballooning and basal hypercontractility was confirmed by left ventriculography. On day 15 of admission, contraction of apical wall was recovered, and basal hypercontraction was disappeared. Conclusion The present case is the first report demonstrating appearance the transient basal wall hypercontraction along with the advent of Takotsubo cardiomyopathy in a patient diagnosed with dilated cardiomyopathy. Whether such findings are indicative of fair prognosis and have the utility of understanding the pathogenesis of dilated cardiomyopathy needs further investigation

    Association between FGF23, α-Klotho, and Cardiac Abnormalities among Patients with Various Chronic Kidney Disease Stages.

    No full text
    Several experimental studies have demonstrated that fibroblast growth factor 23 (FGF23) may induce myocardial hypertrophy via pathways independent of α-Klotho, its co-factor in the induction of phosphaturia. On the other hand, few studies have clearly demonstrated the relationship between FGF23 level and left ventricular hypertrophy among subjects without chronic kidney disease (CKD; i.e., CKD stage G1 or G2).To investigate the data from 903 patients admitted to the cardiology department with various degrees of renal function, including 234 patients with CKD stage G1/G2.Serum levels of full-length FGF23 and α-Klotho were determined by enzyme immunoassay. After adjustment for sex, age, and estimated glomerular filtration rate (eGFR), the highest FGF23 tertile was significantly associated with left ventricular hypertrophy among patients with CKD stage G1/G2 and those with CKD stage G3a/G3b/G4 as compared with the lowest FGF23 tertile, and the association retained significance after further adjustment for serum levels of corrected calcium, inorganic phosphate, and C-reactive protein, as well as diuretic use, history of hypertension, and systolic blood pressure. FGF23 was also associated with low left ventricular ejection fraction among patients with CKD stage G1/G2 and those with CKD stage G3a/G3b/G4 after adjusting for age, sex, eGFR, corrected calcium, and inorganic phosphate. On the other hand, compared with the highest α-Klotho tertile, the lowest α-Klotho tertile was associated with left ventricular hypertrophy and systolic dysfunction only among patients with CKD stage G3b and stage G3a, respectively.An association between FGF23 and cardiac hypertrophy and systolic dysfunction was observed among patients without CKD as well as those with CKD after multivariate adjustment. However, the association between α-Klotho and cardiac hypertrophy and systolic dysfunction was significant only among patients with CKD G3b and G3a, respectively
    corecore