40 research outputs found

    Probiotic-Derived Polyphosphate Enhances the Epithelial Barrier Function and Maintains Intestinal Homeostasis through Integrin–p38 MAPK Pathway

    Get PDF
    Probiotics exhibit beneficial effects on human health, particularly in the maintenance of intestinal homeostasis in a complex manner notwithstanding the diversity of an intestinal flora between individuals. Thus, it is highly probable that some common molecules secreted by probiotic and/or commensal bacteria contribute to the maintenance of intestinal homeostasis and protect the intestinal epithelium from injurious stimuli. To address this question, we aimed to isolate the cytoprotective compound from a lactobacillus strain, Lactobacillus brevis SBC8803 which possess the ability to induce cytoprotective heat shock proteins in mouse small intestine. L. brevis was incubated in MRS broth and the supernatant was passed through with a 0.2-µm filter. Caco2/bbe cells were treated with the culture supernatant, and HSP27 expression was evaluated by Western blotting. HSP27-inducible components were separated by ammonium sulfate precipitation, DEAE anion exchange chromatography, gel filtration, and HPLC. Finally, we identified that the HSP27-inducible fraction was polyphosphate (poly P), a simple repeated structure of phosphates, which is a common product of lactobacilli and other bacteria associated with intestinal microflora without any definitive physiological functions. Then, poly P was synthesized by poly P-synthesizing enzyme polyphosphate kinase. The synthesized poly P significantly induced HSP27 from Caco2/BBE cells. In addition, Poly P suppressed the oxidant-induced intestinal permeability in the mouse small intestine and pharmacological inhibitors of p38 MAPK and integrins counteract its protective effect. Daily intrarectal administration of poly P (10 µg) improved the inflammation grade and survival rate in 4% sodium dextran sulfate-administered mice. This study, for the first time, demonstrated that poly P is the molecule responsible for maintaining intestinal barrier actions which are mediated through the intestinal integrin β1-p38 MAPK

    Measurement of 100- and 290-MeV/A Carbon Incident Neutron Production Cross Sections for Carbon, Nitrogen and Oxygen

    No full text
    Neutron double-differential cross sections from carbon ion incident on carbon, nitrogen and oxygen targets have been measured for neutron energies down to 0.6 MeV in wide directions from 15∘ to 90∘ with 100- and 290-MeV/A incident energies at the Heavy Ion Medical Accelerator in Chiba (HIMAC), National Institute of Radiological Sciences. Two sizes of NE213 scintillators were used as neutron detectors in order to enable neutron energy from below one to several hundred MeV. The neutron energy was measured by the time-of-flight technique between the beam pickup detector and an NE213 scintillator. By using the experimental data, the validity of the calculation results by the PHITS code was examined

    The Recent Improvement and Verification of DARWIN: Development of a New DAQ System and Results of Flight Experiment

    No full text
    To improve radiation safety in high-energy accelerator facilities, the authors have been developing the new radiation dose monitor device DARWIN: Dose monitoring system Applicable to various Radiations with WIde energy raNges. DARWIN is composed of (a) a phoswitch-type scintillation detector, which consists of liquid organic scintillator BC501A coupled with ZnS(Ag) scintillation sheets doped with 6Li, and (b) a data acquisition (DAQ) system for digital analysis of the waveform of the scintillator signals. The DAQ system was recently updated in order to apply DARWIN in monitoring dose rates in radiation fields having time structure, introducing an originally developed module based on a field-programmable gate array. To examine the performance of DARWIN placed in radiation fields composed of varieties of particles over wide energy ranges, the authors mounted DARWIN on a jet aircraft and measured neutron, photon, muon, electron, and positron dose rates at high altitudes. The measured dose rates excellently agreed with the corresponding data calculated by EXPACS over a wide altitude range. This agreement indicates the applicability of DARWIN to dose monitoring in complex radiation fields such as those in high-energy accelerator facilities and aircrafts

    Energy spectra of neutrons penetrating concrete and steel shielding blocks from 24 GeV/c protons incident on thick copper target

    No full text
    In this study, experimental measurements were performed on the spectra of neutrons which penetrate concrete and steel of various thicknesses values when a proton beam of 24 GeV/c was incident on a copper target at the CHARM facility in the East Hall of the CERN Proton Synchrotron (PS) The thicknesses of concrete and steel ranged up to 360 cm and 80 cm, respectively. To measure the neutron spectra, an NE213 scintillator was positioned on the top roof of the shielding structure as the neutron detector. The light output distributions of the detector were converted into the neutron energy spectra using the unfolding method with a calculated response matrix after removing the γ -ray and charged particle events by pulse-shape discrimination and veto counter signals, respectively. The neutron spectra were in agreement with the results obtained using the Monte Carlo simulation code, PHITS, within a factor of 1.4 except for the case of steel 80 cm. The attenuation profiles for concrete and steel were consistent with previous foil activation results within the respective uncertainties
    corecore