17 research outputs found

    Modification of Monoaminergic Activity by MAO Inhibitors Influences Methamphetamine Actions

    No full text
    Methamphetamine (METH) abuse is a serious health and social problem worldwide. At present, however, there are no effective medications for the treatment of METH abuse. Of the intracellular METH target proteins, monoamine oxidase (MAO) is involved in the regulation of monoaminergic tone in the brain, resulting in the modulation of METH-induced behavioral abnormalities in mammals. The METH-induced expression of increased motor activity, stereotypy, and sensitization is closely associated with monoaminergic transmission in the brain. Modification of MAO activity by MAO inhibitors can influence METH action. Of the MAO inhibitors, the propargylamine derivative clorgyline, an irreversible MAO-A inhibitor, effectively blocks METH-induced hyperlocomotion and behavioral sensitization in rodents. Analysis of the associated monoaminergic activity indicates an involvement of altered striatal serotonergic transmission as well as an increased dopaminergic tone. Some effects of MAO inhibitors on METH action appear to be independent of MAO, suggesting complex mechanisms of action of MAO inhibitors in METH abuse. This review describes current research to find effective treatment for METH abuse, using MAO inhibitors

    Brain Histamine -Methyltransferase as a Possible Target of Treatment for Methamphetamine Overdose

    No full text
    Stereotypical behaviors induced by methamphetamine (METH) overdose are one of the overt symptoms of METH abuse, which can be easily assessed in animal models. Currently, there is no successful treatment for METH overdose. There is increasing evidence that elevated levels of brain histamine can attenuate METH-induced behavioral abnormalities, which might therefore constitute a novel therapeutic treatment for METH abuse and METH overdose. In mammals, histamine N -methyltransferase (HMT) is the sole enzyme responsible for degrading histamine in the brain. Metoprine, one of the most potent HMT inhibitors, can cross the blood-brain barrier and increase brain histamine levels by inhibiting HMT. Consequently, this compound can be a candidate for a prototype of drugs for the treatment of METH overdose

    Pretreatment or Posttreatment with Aripiprazole Attenuates Methamphetamine-induced Stereotyped Behavior in Mice

    No full text
    Aripiprazole is a third-generation atypical antipsychotic and a dopamine D 2 receptor partial agonist. In the present study, we investigated whether a single administration of aripiprazole to mice, either as a pretreatment or as a posttreatment, would affect stereotypy induced by methamphetamine (METH). Pretreatment of male ICR mice with aripiprazole (1 or 10 mg/kg, i.p.) attenuated the incidence of METH-induced stereotypical behavior in a dose-dependent manner. Pretreatment of mice with 1 mg/kg aripiprazole produced an increase in the locomotor activity in mice treated with METH compared with mice treated with vehicle plus METH and with 10 mg/kg aripiprazole plus METH. This increase in locomotion is indicative of a rightward shift in the dose-response curve for METH, consistent with a shift in the type of stereotypical behavior observed from biting to sniffing. Aripiprazole posttreatment, after METH-induced stereotypical behavior, was fully expressed and also significantly attenuated overall stereotypy in an aripiprazole dose-dependent manner. These data suggest that the antagonism of METH effects by aripiprazole should be investigated as a potential treatment for acute METH overdose

    Attenuation of Methamphetamine-Induced conditioned place preference in Mice after a Drug-Free period and Facilitation of this effect by exposure to a Running Wheel

    No full text
    The effect of exposure of male mice to a horizontal running wheel (Fast-Trac™) on conditioned place preference (CPP) and hyperlocomotion induced by methamphetamine (METH) was determined. In the first experiment eleven-week-old male ICR mice were divided into three groups and exposed to three different environments (housed individually with (group A) or without a running wheel (group B), or housed in a group of eight mice without a running wheel (group C)) for two weeks except during periods of CPP conditioning and testing procedures. Administration of METH (0.5 mg/kg, i.p.) every other day during three conditioning sessions, with saline conditioning sessions in the other compartment on alternate days (ie, saline/METH conditioning), induced a significant CPP, compared to saline/saline conditioning, in mice of groups A and C, but not B. The increased CPP for METH was significantly attenuated by additional 5-day (drug-free)-exposure to a running wheel in mice of group A (but not group C). In the second experiment, pre-exposure of another set of mice to a running wheel for three days did not affect a subsequent METH (1.0 mg/kg)- or saline-induced horizontal locomotion or rearing, compared with the locomotor activities observed in mice without an experience of a running wheel. These observations suggest that experience of a running wheel may selectively facilitate an attenuation of drug-seeking behavior

    Kamishoyosan and Kamikihito protect against decreased KCC2 expression induced by the P. gingivalis lipopolysaccharide treatment in PC-12 cells and improve behavioral abnormalities in male mice

    No full text
    Kamishoyosan (KSS) and Kamikihito (KKT) have been traditionally prescribed for neuropsychiatric symptoms in Japan. However, the molecular mechanism of its effect is not elucidated enough. On the other hand, it has been reported that lipopolysaccharide derived from Porphyromonas gingivalis (P. g LPS) is involved not only in periodontal disease but also in the systemic diseases such as psychiatric disorders via neuroinflammation. Here, we investigated the molecular mechanism of KSS and KKT treatment by LPS-induced neuropathy using PC-12 cells. When P. g LPS was administrated during the NGF treatment, the KCC2 expression was decreased in PC-12 cells. P. g LPS treatment also decreased the WNK and phospho SPAK (pSPAK) expression and enhanced GSK-3β expression that negatively regulates WNK-SPAK signaling. Moreover, when KSS or KKT was administrated before P. g LPS treatment, the decrease of KCC2, WNK and pSPAK was rescued. KSS and KKT treatment also rescued the enhancement of GSK3β expression by P. g LPS treatment. Furthermore, KSS, KKT and/or oxytocin could rescue behavioral abnormalities caused by P. g LPS treatment by animal experiments. These effects were not shown in the Goreisan treatment, which has been reported to act on the central nervous system. These results indicate that KSS and KKT are candidates for therapeutic agents for neural dysfunction
    corecore