39 research outputs found

    High-performance liquid chromatography–tandem mass spectrometry in the identification and determination of phase I and phase II drug metabolites

    Get PDF
    Applications of tandem mass spectrometry (MS/MS) techniques coupled with high-performance liquid chromatography (HPLC) in the identification and determination of phase I and phase II drug metabolites are reviewed with an emphasis on recent papers published predominantly within the last 6 years (2002–2007) reporting the employment of atmospheric pressure ionization techniques as the most promising approach for a sensitive detection, positive identification and quantitation of metabolites in complex biological matrices. This review is devoted to in vitro and in vivo drug biotransformation in humans and animals. The first step preceding an HPLC-MS bioanalysis consists in the choice of suitable sample preparation procedures (biomatrix sampling, homogenization, internal standard addition, deproteination, centrifugation, extraction). The subsequent step is the right optimization of chromatographic conditions providing the required separation selectivity, analysis time and also good compatibility with the MS detection. This is usually not accessible without the employment of the parent drug and synthesized or isolated chemical standards of expected phase I and sometimes also phase II metabolites. The incorporation of additional detectors (photodiode-array UV, fluorescence, polarimetric and others) between the HPLC and MS instruments can result in valuable analytical information supplementing MS results. The relation among the structural changes caused by metabolic reactions and corresponding shifts in the retention behavior in reversed-phase systems is discussed as supporting information for identification of the metabolite. The first and basic step in the interpretation of mass spectra is always the molecular weight (MW) determination based on the presence of protonated molecules [M+H]+ and sometimes adducts with ammonium or alkali-metal ions, observed in the positive-ion full-scan mass spectra. The MW determination can be confirmed by the [M-H]- ion for metabolites providing a signal in negative-ion mass spectra. MS/MS is a worthy tool for further structural characterization because of the occurrence of characteristic fragment ions, either MSn analysis for studying the fragmentation patterns using trap-based analyzers or high mass accuracy measurements for elemental composition determination using time of flight based or Fourier transform mass analyzers. The correlation between typical functional groups found in phase I and phase II drug metabolites and corresponding neutral losses is generalized and illustrated for selected examples. The choice of a suitable ionization technique and polarity mode in relation to the metabolite structure is discussed as well

    Preclinical electrogastrography in experimental pigs

    Get PDF
    Surface electrogastrography (EGG) is a non-invasive means of recording gastric myoelectric activity or slow waves from cutaneous leads placed over the stomach. This paper provides a comprehensive review of preclinical EGG. Our group recently set up and worked out the methods for EGG in experimental pigs. We gained our initial experience in the use of EGG in assessment of porcine gastric myoelectric activity after volume challenge and after intragastric administration of itopride and erythromycin. The mean dominant frequency in pigs is comparable with that found in humans. EGG in experimental pigs is feasible. Experimental EGG is an important basis for further preclinical projects in pharmacology and toxicology

    Acute kidney injury in children

    Get PDF
    Acute kidney injury (AKI) (previously called acute renal failure) is characterized by a reversible increase in the blood concentration of creatinine and nitrogenous waste products and by the inability of the kidney to regulate fluid and electrolyte homeostasis appropriately. The incidence of AKI in children appears to be increasing, and the etiology of AKI over the past decades has shifted from primary renal disease to multifactorial causes, particularly in hospitalized children. Genetic factors may predispose some children to AKI. Renal injury can be divided into pre-renal failure, intrinsic renal disease including vascular insults, and obstructive uropathies. The pathophysiology of hypoxia/ischemia-induced AKI is not well understood, but significant progress in elucidating the cellular, biochemical and molecular events has been made over the past several years. The history, physical examination, and laboratory studies, including urinalysis and radiographic studies, can establish the likely cause(s) of AKI. Many interventions such as ‘renal-dose dopamine’ and diuretic therapy have been shown not to alter the course of AKI. The prognosis of AKI is highly dependent on the underlying etiology of the AKI. Children who have suffered AKI from any cause are at risk for late development of kidney disease several years after the initial insult. Therapeutic interventions in AKI have been largely disappointing, likely due to the complex nature of the pathophysiology of AKI, the fact that the serum creatinine concentration is an insensitive measure of kidney function, and because of co-morbid factors in treated patients. Improved understanding of the pathophysiology of AKI, early biomarkers of AKI, and better classification of AKI are needed for the development of successful therapeutic strategies for the treatment of AKI

    Sensitive determination of reduced flubendazole in biological samples using HPLC

    No full text
    A validated LC method is proposed for analysis of flubendazole and its metabolites in biological samples of Haemonchus contortus. Two detectors were used—photodiode-array and spectrofluorimetric. The native fluorescence of reduced flubendazole, the key substance investigated during biological experiments, was used for its fluorimetric detection with a very low limit of quantification (0.63 nmol L-1)

    Experimental Goettingen minipig and beagle dog as two species used in bioequivalence studies for clinical pharmacology (5-aminosalicylic acid and atenolol as model drugs). Gen Physiol Biophys 18: 80–85

    No full text
    Abstract. Due to proven similarities in biotransformation between man and mini pig, minipig seems to be the experimental animal of choice for preclinical phar macokinetic studies when an experiment with a drug exhibiting a great first pass bioelimination (like 5-aminosalicylic acid) is to be realised. On the other hand, both minipig and dog may be suitable species for a pharmacokinetic study with a drug characterized by a small extent of first pass biotransformation (like atenolol)

    Sensitive chiral high-performance liquid chromatographic determination of anthelmintic flubendazole and its phase I metabolites in blood plasma using UV photodiode-array and fluorescence detection Application to pharmacokinetic studies in sheep

    No full text
    Although benzimidazole anthelmintic flubendazole, methyl ester of [5-(4-fluorobenzoyl)-1H-benzimidazol-2-yl]carbamic acid, is extensively used in veterinary and human medicine for the treatment of gastrointestinal parasitic helminth infections, reliable data about its pharmacokinetics in various species have not been reported. Our previous work [M. Nobilis, Th. Jira, M. Lísa, M. Holcapek, B. Szotáková, J. Lamka, L.Skálová, J. Chromatogr. A 1149 (2007) 112-120] had described the stereospecificity of carbonyl reduction during phase I metabolic experiments in vitro. For in vivo pharmacokinetic studies, further improvement and optimization of bioanalytical HPLC method in terms of sensitivity and selectivity was necessary. Hence, a modified chiral bioanalytical HPLC method involving both UV photodiode-array and fluorescence detection for the determination of flubendazole, both enantiomers of reduced flubendazole and hydrolyzed flubendazole in the extracts from plasma samples was tested and validated. Albendazole was used as an internal standard. Sample preparation process involved a pH-dependent extraction of the analytes from the blood plasma into tert-butylmethyl ether. Chromatographic separations were performed on a Chiralcel OD-R 250 mm x 4.6mm column with mobile phase methanol-1M NaClO(4) (75:25, v/v) at the flow rate 0.5 ml min(-1). In quantitation, selective UV absorption maxima of 290 nm (for reduced flubendazole), 295 nm (for albendazole), 310 nm (for flubendazole) and 330 nm (for hydrolyzed flubendazole) were used in the UV photodiode-array detection, and lambda(exc.)/lambda(emis.)=228 nm/310 nm (for reduced flubendazole) and lambda(exc.)/lambda(emis.)=236 nm/346 nm (for albendazole) were set on the fluorescence detector. The fluorescence detection was approximately 10-times more sensitive than the UV detection. Each HPLC run lasted 27 min. The validated chiral HPLC-PDA-FL method was employed in the pharmacokinetic studies of flubendazole in sheep. The stereospecificity of the enzymatic carbonyl reduction of flubendazole was also observed in vivo. (+)-Reduced flubendazole was found to be the principal metabolite in ovine blood plasma and only low concentrations of hydrolyzed flubendazole, the parent flubendazole and (-)-reduced flubendazole were detected in this biomatrix
    corecore