954 research outputs found
Derivation of a dynamic model of the kinetics of nitrogen uptake throughout the growth of lettuce : calibration and validation
A kinetic model of nitrogen (N) uptake throughout growth was developed for lettuce
cultivated in nutrient solution under varying natural light conditions. The model couples
nitrogen uptake with dry matter accumulation using a two-compartment mechanistic
approach, incorporating structural and non-structural pools. Maximum nitrogen uptake
rates are assumed to decline with shoot dry weight, to allow for the effects of plant
age. The model was parameterized using data from the literature, and calibrated for
differences in light intensity using an optimization algorithm utilizing data from three
experiments in different growing seasons. The calibrated model was validated against
the data from two independent experiments conducted under different light conditions.
Results showed that the model made good predictions of nitrogen uptake by plants from
seedlings to maturity under fluctuating light levels in a glasshouse. Plants grown at a
higher light intensity showed larger maximum nitrogen uptake rates, but the effect of
light intensity declined towards plant maturity
Hydraulic architecture of palms
Journal ArticleThe water transport and storage system of palms is adapted to maintain the primary stem xylem functional over the life of the shoot, and in spite of severe drought. However, our structural information far exceeds our knowledge of vascular function, and these functional considerations bring more questions than answers. The tendency to generalize from limited data on a few species begs the question of how the hydraulic parameters discussed vary between palms with different growth forms and ecologies
Advection, diffusion and delivery over a network
Many biological, geophysical and technological systems involve the transport
of resource over a network. In this paper we present an algorithm for
calculating the exact concentration of resource at any point in space or time,
given that the resource in the network is lost or delivered out of the network
at a given rate, while being subject to advection and diffusion. We consider
the implications of advection, diffusion and delivery for simple models of
glucose delivery through a vascular network, and conclude that in certain
circumstances, increasing the volume of blood and the number of glucose
transporters can actually decrease the total rate of glucose delivery. We also
consider the case of empirically determined fungal networks, and analyze the
distribution of resource that emerges as such networks grow over time. Fungal
growth involves the expansion of fluid filled vessels, which necessarily
involves the movement of fluid. In three empirically determined fungal networks
we found that the minimum currents consistent with the observed growth would
effectively transport resource throughout the network over the time-scale of
growth. This suggests that in foraging fungi, the active transport mechanisms
observed in the growing tips may not be required for long range transport.Comment: 54 pages including appendix, 10 figure
Pressure Dependence of the Elastic Moduli in Aluminum Rich Al-Li Compounds
I have carried out numerical first principles calculations of the pressure
dependence of the elastic moduli for several ordered structures in the
Aluminum-Lithium system, specifically FCC Al, FCC and BCC Li, L1_2 Al_3Li, and
an ordered FCC Al_7Li supercell. The calculations were performed using the full
potential linear augmented plane wave method (LAPW) to calculate the total
energy as a function of strain, after which the data was fit to a polynomial
function of the strain to determine the modulus. A procedure for estimating the
errors in this process is also given. The predicted equilibrium lattice
parameters are slightly smaller than found experimentally, consistent with
other LDA calculations. The computed elastic moduli are within approximately
10% of the experimentally measured moduli, provided the calculations are
carried out at the experimental lattice constant. The LDA equilibrium shear
modulus C11-C12 increases from 59.3 GPa in Al, to 76.0 GPa in Al_7Li, to 106.2
GPa in Al_3Li. The modulus C_44 increases from 38.4 GPa in Al to 46.1 GPa in
Al_7Li, then falls to 40.7 GPa in Al_3Li. All of the calculated elastic moduli
increase with pressure with the exception of BCC Li, which becomes elastically
unstable at about 2 GPa, where C_11-C_12 vanishes.Comment: 17 pages (REVTEX) + 7 postscript figure
Ergodicity, Decisions, and Partial Information
In the simplest sequential decision problem for an ergodic stochastic process
X, at each time n a decision u_n is made as a function of past observations
X_0,...,X_{n-1}, and a loss l(u_n,X_n) is incurred. In this setting, it is
known that one may choose (under a mild integrability assumption) a decision
strategy whose pathwise time-average loss is asymptotically smaller than that
of any other strategy. The corresponding problem in the case of partial
information proves to be much more delicate, however: if the process X is not
observable, but decisions must be based on the observation of a different
process Y, the existence of pathwise optimal strategies is not guaranteed.
The aim of this paper is to exhibit connections between pathwise optimal
strategies and notions from ergodic theory. The sequential decision problem is
developed in the general setting of an ergodic dynamical system (\Omega,B,P,T)
with partial information Y\subseteq B. The existence of pathwise optimal
strategies grounded in two basic properties: the conditional ergodic theory of
the dynamical system, and the complexity of the loss function. When the loss
function is not too complex, a general sufficient condition for the existence
of pathwise optimal strategies is that the dynamical system is a conditional
K-automorphism relative to the past observations \bigvee_n T^n Y. If the
conditional ergodicity assumption is strengthened, the complexity assumption
can be weakened. Several examples demonstrate the interplay between complexity
and ergodicity, which does not arise in the case of full information. Our
results also yield a decision-theoretic characterization of weak mixing in
ergodic theory, and establish pathwise optimality of ergodic nonlinear filters.Comment: 45 page
The identification and neurochemical characterization of central neurons that target parasympathetic preganglionic neurons involved in the regulation of choroidal blood flow in the rat eye using pseudorabies virus, immunolabeling and conventional pathway tracing methods
The choroidal blood vessels of the eye provide the main vascular support to the outer retina. These blood vessels are under parasympathetic vasodilatory control via input from the pterygopalatine ganglion (PPG), which in turn receives its preganglionic input from the superior salivatory nucleus (SSN) of the hindbrain. The present study characterized the central neurons projecting to the SSN neurons innervating choroidal PPG neurons, using pathway tracing and immunolabeling. In the initial set of studies, minute injections of the Bartha strain of the retrograde transneuronal tracer pseudorabies virus (PRV) were made into choroid in rats in which the superior cervical ganglia had been excised (to prevent labeling of sympathetic circuitry). Diverse neuronal populations beyond the choroidal part of ipsilateral SSN showed transneuronal labeling, which notably included the parvocellular part of the paraventricular nucleus of the hypothalamus (PVN), the periaqueductal gray, the raphe magnus (RaM), the B3 region of the pons, A5, the nucleus of the solitary tract (NTS), the rostral ventrolateral medulla (RVLM), and the intermediate reticular nucleus of the medulla. The PRV+ neurons were located in the parts of these cell groups that are responsive to systemic blood pressure signals and involved in systemic blood pressure regulation by the sympathetic nervous system. In a second set of studies using PRV labeling, conventional pathway tracing, and immunolabeling, we found that PVN neurons projecting to SSN tended to be oxytocinergic and glutamatergic, RaM neurons projecting to SSN were serotonergic, and NTS neurons projecting to SSN were glutamatergic. Our results suggest that blood pressure and volume signals that drive sympathetic constriction of the systemic vasculature may also drive parasympathetic vasodilation of the choroidal vasculature, and may thereby contribute to choroidal baroregulation during low blood pressure
- …