108 research outputs found

    IL-31 expression by inflammatory cells is preferentially elevated in atopic dermatitis

    Full text link
    Interleukin-31 (IL-31) is a recently discovered cytokine expressed in many human tissues, and predominantly by activated CD4+ T cells. IL-31 signals through a heterodimeric receptor consisting of IL-31 receptor alpha (IL-31RA) and oncostatin M receptor beta (OSMR). Earlier studies have shown involvement of IL-31 and its receptor components IL-31RA and OSMR in atopic dermatitis, pruritus and Th2-weighted inflammation at the mRNA level. The aim of this study was to investigate IL-31 protein expression in skin of such conditions. Immunohisto-chemical staining for IL-31, IL-31RA and OSMR was performed in formalin-fixed paraffin-embedded biopsy specimens. IL-31 expression was increased in the inflammatory infiltrates from skin biopsies taken from subjects with atopic dermatitis, compared with controls (p ≤ 0.05). IL-31, IL-31RA and OSMR protein immunoreactivity was not increased in biopsies from subjects with other Th2-weighted and pruritic skin diseases. Our results confirm, at the protein level, the relationship between IL-31 expression and atopic dermatitis. Our results do not support a general relationship between expression of IL-31/IL-31R and pruritic or Th2-mediated diseases

    Impact of Aspergillus fumigatus in allergic airway diseases

    Get PDF
    For decades, fungi have been recognized as associated with asthma and other reactive airway diseases. In contrast to type I-mediated allergies caused by pollen, fungi cause a large number of allergic diseases such as allergic bronchopulmonary mycoses, rhinitis, allergic sinusitis and hypersensitivity pneumonitis. Amongst the fungi, Aspergillus fumigatus is the most prevalent cause of severe pulmonary allergic disease, including allergic bronchopulmonary aspergillosis (ABPA), known to be associated with chronic lung injury and deterioration in pulmonary function in people with chronic asthma and cystic fibrosis (CF). The goal of this review is to discuss new understandings of host-pathogen interactions in the genesis of allergic airway diseases caused by A. fumigatus. Host and pathogen related factors that participate in triggering the inflammatory cycle leading to pulmonary exacerbations in ABPA are discussed

    Identification of Critical Amino Acids in an Immunodominant IgE Epitope of Pen c 13, a Major Allergen from Penicillium citrinum

    Get PDF
    Background: Pen c 13, identified as a 33-kDa alkaline serine protease, is a major allergen secreted by Penicillium citrinum. Detailed knowledge about the epitopes responsible for IgE binding would help inform the diagnosis/prognosis of fungal allergy and facilitate the rational design of hypoallergenic candidate vaccines. The goal of the present study was to characterize the IgE epitopes of Pen c 13. Methodology/Principal Findings: Serum samples were collected from 10 patients with mold allergy and positive Pen c 13 skin test results. IgE-binding epitopes on rPen c 13 were mapped using an enzymatic digestion and chemical cleavage method, followed by dot-blotting and mass spectrometry. A B-cell epitope-predicting server and molecular modeling were used to predict the residues most likely involved in IgE binding. Theoretically predicted IgE-binding regions were further confirmed by site-directed mutagenesis assays. At least twelve different IgE-binding epitopes located throughout Pen c 13 were identified. Of these, peptides S16 (A 148 –E 166) and S22 (A 243 –K 274) were recognized by sera from 90 % and 100 % of the patients tested, and were further confirmed by inhibition assays. Peptide S22 was selected for further analysis of IgE-binding ability. The results of serum screening showed that the majority of IgE-binding ability resided in the C-terminus. One Pen c 13 mutant, G270A (T 261 –K 274), exhibited clearly enhanced IgE reactivity, whereas another, K274A, exhibited dramatically reduced IgE reactivity

    Nitrogen acquisition by roots: physiological and developmental mechanisms ensuring plant adaptation to a fluctuating resource

    Full text link
    corecore