2 research outputs found

    Strengthening Behavior of Rectangular Stainless Steel Tube Beams Filled with Recycled Concrete Using Flat CFRP Sheets

    Full text link
    Recently, the adoption of recycled concrete instead of normal concrete as infill material in tubular stainless steel members has received great attention from researchers regarding environmental improvement. However, the flexural behavior of recycled concrete-filled stainless steel tube (RCFSST) beams that have been repaired/strengthened using carbon fiber-reinforced polymer (CFRP) sheets via a partial-wrapping scheme has not yet been investigated, and is required for a variety of reasons, as with any conventional structural member. Therefore, this study experimentally tested six specimens for investigating the effects of using varied recycled aggregate content (0%, 50%, and 100%) in infill concrete material of stainless steel tube beams strengthened with CFRP sheets. Additionally, several finite element RCFSST models were built and analyzed to numerically investigate the effects of further parameters, such as the varied width-to-thickness ratios and yield strengths. Generally, the results showed that using 100% recycled aggregates in infill concrete material reduced the RCFSST beam’s bending capacity by about 15% when compared to the corresponding control specimen (0% recycled aggregate), with little difference in the failure mode behavior. Pre-damaged RCFSST beam capacity showed significant improvement (43.6%) when strengthened with three CFRP layers. The RCFST model with a lower w/t ratio showed better-strengthening performance than those with a higher ratio, where, the models with w/t ratios equal to 15 and 48 achieved a bending capacity improvement equal to about 18% and 35%, respectively, as an example. Furthermore, the results obtained from the current study are well compared by those predicted using the existing analytical methods

    Mechanical Properties and Water Absorption Capacity of Hybrid GFRP Composites

    Full text link
    Hybrid glass fibre reinforced polymer (GFRP) composites have been used for decades in various engineering applications. However, it has a drawback with its application in marine/flood environments due to a lack of water resistance and frail mechanical stability. Floods have been considered one of the most periodic hazards that could hit urban areas, due to climate change. The present paper aims to address this gap and to investigate the mechanical properties (tensile, compressive, and flexural strength) and water absorption capacity of hybrid GFRP composite comprising woven E-glass fabric and epoxy resin, various reinforcing materials (kenaf and coconut fibres), and various filler materials (fly ash, nano-silica, and calcium carbonate (CaCO3). The composites with 30 wt.% GFRP, 50 wt.% resin, 15 wt.% fly ash, 5 wt.% CaCO3, 10 wt.% GFRP, 60 wt.% resin, and 30 wt.% fly ash showed the lowest water absorption property of 0.45%. The results revealed that the GFRP composite reinforced kenaf fibres with nano-silica, fly ash, and CaCO3 improved the water absorption resistance. At the same time, GFRP reinforced the coconut fibres with fly ash, and kenaf fibres with CaCO3 showed no favourable impact on water absorption. The identification of a hybrid GFRP composite with various reinforcing materials and fillers would assist future developments with a more compatible, enhanced, and reliable water-resistant composite, specifically for structural applications in flood-prone areas
    corecore