431 research outputs found

    A Developer-Friendly Library for Smart Home IoT Privacy-Preserving Traffic Obfuscation

    Full text link
    The number and variety of Internet-connected devices have grown enormously in the past few years, presenting new challenges to security and privacy. Research has shown that network adversaries can use traffic rate metadata from consumer IoT devices to infer sensitive user activities. Shaping traffic flows to fit distributions independent of user activities can protect privacy, but this approach has seen little adoption due to required developer effort and overhead bandwidth costs. Here, we present a Python library for IoT developers to easily integrate privacy-preserving traffic shaping into their products. The library replaces standard networking functions with versions that automatically obfuscate device traffic patterns through a combination of payload padding, fragmentation, and randomized cover traffic. Our library successfully preserves user privacy and requires approximately 4 KB/s overhead bandwidth for IoT devices with low send rates or high latency tolerances. This overhead is reasonable given normal Internet speeds in American homes and is an improvement on the bandwidth requirements of existing solutions.Comment: 6 pages, 6 figure

    Machine Learning DDoS Detection for Consumer Internet of Things Devices

    Full text link
    An increasing number of Internet of Things (IoT) devices are connecting to the Internet, yet many of these devices are fundamentally insecure, exposing the Internet to a variety of attacks. Botnets such as Mirai have used insecure consumer IoT devices to conduct distributed denial of service (DDoS) attacks on critical Internet infrastructure. This motivates the development of new techniques to automatically detect consumer IoT attack traffic. In this paper, we demonstrate that using IoT-specific network behaviors (e.g. limited number of endpoints and regular time intervals between packets) to inform feature selection can result in high accuracy DDoS detection in IoT network traffic with a variety of machine learning algorithms, including neural networks. These results indicate that home gateway routers or other network middleboxes could automatically detect local IoT device sources of DDoS attacks using low-cost machine learning algorithms and traffic data that is flow-based and protocol-agnostic.Comment: 7 pages, 3 figures, 3 tables, appears in the 2018 Workshop on Deep Learning and Security (DLS '18

    Evaluating the Contextual Integrity of Privacy Regulation: Parents' IoT Toy Privacy Norms Versus COPPA

    Full text link
    Increased concern about data privacy has prompted new and updated data protection regulations worldwide. However, there has been no rigorous way to test whether the practices mandated by these regulations actually align with the privacy norms of affected populations. Here, we demonstrate that surveys based on the theory of contextual integrity provide a quantifiable and scalable method for measuring the conformity of specific regulatory provisions to privacy norms. We apply this method to the U.S. Children's Online Privacy Protection Act (COPPA), surveying 195 parents and providing the first data that COPPA's mandates generally align with parents' privacy expectations for Internet-connected "smart" children's toys. Nevertheless, variations in the acceptability of data collection across specific smart toys, information types, parent ages, and other conditions emphasize the importance of detailed contextual factors to privacy norms, which may not be adequately captured by COPPA.Comment: 18 pages, 1 table, 4 figures, 2 appendice

    The Extent of Multi-particle Quantum Non-locality

    Full text link
    It is well known that entangled quantum states can be nonlocal: the correlations between local measurements carried out on these states cannot always be reproduced by local hidden variable models. Svetlichny, followed by others, showed that multipartite quantum states are even more nonlocal than bipartite ones in the sense that nonlocal classical models with (super-luminal) communication between some of the parties cannot reproduce the quantum correlations. Here we study in detail the kinds of nonlocality present in quantum states. More precisely we enquire what kinds of classical communication patterns cannot reproduce quantum correlations. By studying the extremal points of the space of all multiparty probability distributions, in which all parties can make one of a pair of measurements each with two possible outcomes, we find a necessary condition for classical nonlocal models to reproduce the statistics of all quantum states. This condition extends and generalises work of Svetlichny and others in which it was shown that a particular class of classical nonlocal models, the ``separable'' models, cannot reproduce the statistics of all multiparticle quantum states. Our condition shows that the nonlocality present in some entangled multiparticle quantum states is much stronger than previously thought. We also study the sufficiency of our condition.Comment: 10 pages, 2 figures, journal versio

    User Perceptions of Smart Home IoT Privacy

    Full text link
    Smart home Internet of Things (IoT) devices are rapidly increasing in popularity, with more households including Internet-connected devices that continuously monitor user activities. In this study, we conduct eleven semi-structured interviews with smart home owners, investigating their reasons for purchasing IoT devices, perceptions of smart home privacy risks, and actions taken to protect their privacy from those external to the home who create, manage, track, or regulate IoT devices and/or their data. We note several recurring themes. First, users' desires for convenience and connectedness dictate their privacy-related behaviors for dealing with external entities, such as device manufacturers, Internet Service Providers, governments, and advertisers. Second, user opinions about external entities collecting smart home data depend on perceived benefit from these entities. Third, users trust IoT device manufacturers to protect their privacy but do not verify that these protections are in place. Fourth, users are unaware of privacy risks from inference algorithms operating on data from non-audio/visual devices. These findings motivate several recommendations for device designers, researchers, and industry standards to better match device privacy features to the expectations and preferences of smart home owners.Comment: 20 pages, 1 tabl
    corecore