1,603 research outputs found
Exact diagonalization study of the two-dimensional t-J-Holstein model
We study by exact diagonalization the two-dimensional t-J-Holstein model near
quarter filling by retaining only few phonon modes in momentum space. This
truncation allows us to incorporate the full dynamics of the retained phonon
modes. The behavior of the kinetic energy, the charge structure factor and
other physical quantities, show the presence of a transition from a delocalized
phase to a localized phase at a finite value of the electron-phonon coupling.
We have also given some indications that the e-ph coupling leads in general to
a suppression of the pairing susceptibility at quarter filling.Comment: 11 pages, Revtex v. 2.0, 4 figures available from author
Possible high superconductivity mediated by antiferromagnetic spin fluctuations in systems with Fermi surface pockets
We propose that if there are two small pocket-like Fermi surfaces, and the
spin susceptibility is pronounced around a wave vector {\bf Q} that bridges the
two pockets, the spin-singlet superconductivity mediated by spin fluctuations
may have a high transition temperature. Using the fluctuation exchange
approximation, this idea is confirmed for the Hubbard on a lattice with
alternating hopping integrals, for which is estimated to be almost an
order of magnitude larger than those for systems with a large connected Fermi
surface.Comment: 5 pages, uses RevTe
Dynamical Properties of Two Coupled Hubbard Chains at Half-filling
Using grand canonical Quantum Monte Carlo (QMC) simulations combined with
Maximum Entropy analytic continuation, as well as analytical methods, we
examine the one- and two-particle dynamical properties of the Hubbard model on
two coupled chains at half-filling. The one-particle spectral weight function,
, undergoes a qualitative change with interchain hopping
associated with a transition from a four-band insulator to a two-band
insulator. A simple analytical model based on the propagation of exact rung
singlet states gives a good description of the features at large . For
smaller , is similar to that of the
one-dimensional model, with a coherent band of width the effective
antiferromagnetic exchange reasonably well-described by renormalized
spin-wave theory. The coherent band rides on a broad background of width
several times the parallel hopping integral , an incoherent structure
similar to that found in calculations on both the one- and two-dimensional
models. We also present QMC results for the two-particle spin and charge
excitation spectra, and relate their behavior to the rung singlet picture for
large and to the results of spin-wave theory for small .Comment: 9 pages + 10 postscript figures, submitted to Phys.Rev.B, revised
version with isotropic t_perp=t data include
Numerical study of a superconductor-insulator transition in a half-filled Hubbard chain with distant transfers
The ground state of a one-dimensional Hubbard model having the next-nearest
neighbor hopping (t') as well as the nearest-neighbor one (t) is numerically
investigated at half-filling. A quantum Monte Carlo result shows a slowly
decaying pairing correlation for a sizeable interaction strength ,
while the system is shown to become insulating for yet larger
from a direct evaluation of the charge gap with the density-matrix
renormalization group method. The results are consistent with Fabrizio's recent
weak-coupling theory which suggests a transition from a superconductor into an
insulator at a finite U.Comment: 4 pages, RevTeX, uses epsf.sty and multicol.st
Enhanced Bound State Formation in Two Dimensions via Stripe-Like Hopping Anisotropies
We have investigated two-electron bound state formation in a square
two-dimensional t-J-U model with hopping anisotropies for zero electron
density; these anisotropies are introduced to mimic the hopping energies
similar to those expected in stripe-like arrangements of holes and spins found
in various transition metal oxides. In this report we provide analytical
solutions to this problem, and thus demonstrate that bound-state formation
occurs at a critical exchange coupling, J_c, that decreases to zero in the
limit of extreme hopping anisotropy t_y/t_x -> 0. This result should be
contrasted with J_c/t = 2 for either a one-dimensional chain, or a
two-dimensional plane with isotropic hopping. Most importantly, this behaviour
is found to be qualitatively similar to that of two electrons on the two-leg
ladder problem in the limit of t_interchain/t_intrachain -> 0. Using the latter
result as guidance, we have evaluated the pair correlation function, thus
determining that the bound state corresponds to one electron moving along one
chain, with the second electron moving along the opposite chain, similar to two
electrons confined to move along parallel, neighbouring, metallic stripes. We
emphasize that the above results are not restricted to the zero density limit -
we have completed an exact diagonalization study of two holes in a 12 X 2
two-leg ladder described by the t-J model and have found that the
above-mentioned lowering of the binding energy with hopping anisotropy persists
near half filling.Comment: 6 pages, 3 eps figure
Phase diagram of the two-chain Hubbard model
We have calculated the charge gap and spin gap for the two-chain Hubbard
model as a function of the on-site Coulomb interaction and the interchain
hopping amplitude. We used the density matrix renormalization group method and
developed a method to calculate separately the gaps numerically for the
symmetric and antisymmetric modes with respect to the exchange of the chain
indices. We have found very different behaviors for the weak and strong
interaction cases. Our calculated phase diagram is compared to the one obtained
by Balents and Fisher using the weak coupling renormalization group technique.Comment: 4 pages, 6 figures, to appear in PR
Comparison of whole-body sensorimotor skill learning between strength athletes, endurance athletes and healthy sedentary adults
Motor sequences represent an integral part of human motor ability. Apart from simple movement sequences, complex coordinated movement sequences are the building blocks for peak athletic performance. Accordingly, optimized temporal and spatial coordination of muscle action across multiple limbs may be a distinguishing feature between athletes and non-athletes in many sports. In the present study, we aimed to assess differences between strength and endurance athletes and non-athletes during learning of a complex whole-body serial reaction time task (CWB-SRTT). For this purpose, 26 nonathletes (NAG) and 25 athletes (AG) learned the CWB-SRTT over 2 days separated by 7 days. Mean response times of participants were recorded and statistically analyzed for sequence-specific and non-sequence-specific improvements, as well as differences in learning rates and retention. Furthermore, AG was subdivided into strength (SG) and endurance (EG) athletes, and all analysis steps were repeated. Our results show a better mean response time of AG compared to NAG. However, we could not detect differences in sequence-specific or non-sequence-specific learning, as well as different retention rates between NAG and AG or SG and EG. We assume here that a potential lack of motor transfer between general athletic abilities and the specific complex motor sequence mainly accounts for our findings
Transition between Two Oscillation Modes
A model for the symmetric coupling of two self-oscillators is presented. The
nonlinearities cause the system to vibrate in two modes of different
symmetries. The transition between these two regimes of oscillation can occur
by two different scenarios. This might model the release of vortices behind
circular cylinders with a possible transition from a symmetric to an
antisymmetric Benard-von Karman vortex street.Comment: 12 pages, 0 figure
Time evolution of Matrix Product States
In this work we develop several new simulation algorithms for 1D many-body
quantum mechanical systems combining the Matrix Product State variational
ansatz with Taylor, Pade and Arnoldi approximations to the evolution operator.
By comparing all methods with previous techniques based on Trotter
decompositions we demonstrate that the Arnoldi method is the best one, reaching
extremely good accuracy with moderate resources. Finally we apply this
algorithm to studying the formation of molecules in an optical lattices when
crossing a Feschbach resonance with a cloud of two-species hard-core bosons.Comment: More extensive comparison with all nearest-neighbor spin s=1/2
models. The results in this manuscript have been superseded by a more
complete work in cond-mat/061021
- …