4 research outputs found

    The Spatial Distribution of the Microbial Community in a Contaminated Aquitard below an Industrial Zone

    No full text
    The industrial complex Neot Hovav, in Israel, is situated above an anaerobic fractured chalk aquitard, which is polluted by a wide variety of hazardous organic compounds. These include volatile and non-volatile, halogenated, organic compounds. In this study, we characterized the indigenous bacterial population in 17 boreholes of the groundwater environment, while observing the spatial variations in the population and structure as a function of distance from the polluting source. In addition, the de-halogenating potential of the microbial groundwater population was tested through a series of lab microcosm experiments, thus exemplifying the potential and limitations for bioremediation of the site. In all samples, the dominant phylum was Proteobacteria. In the production plant area, the non-obligatory organo-halide respiring bacteria (OHRB) Firmicutes Phylum was also detected in the polluted water, in abundancies of up to 16 %. Non-metric multidimensional scaling (NMDS) analysis of the microbial community structure in the groundwater exhibited clusters of distinct populations following the location in the industrial complex and distance from the polluting source. Dehalogenation of halogenated ethylene was demonstrated in contrast to the persistence of brominated alcohols. Persistence is likely due to the chemical characteristics of brominated alcohols, and not because of the absence of active de-halogenating bacteria

    Radionuclide Transport Simulations Supporting Proposed Borehole Waste Disposal in Israel

    No full text
    A scientific collaboration between the U.S. and Israel is underway to assess the suitability of a potential site for subsurface radioactive waste disposal in the Negev Desert, Israel. The Negev Desert has several favorable attributes for geologic disposal, including an arid climate, a deep vadose zone, interlayered low-permeability lithologies, and carbonate rocks with high uranium-sorption potential. These features may provide a robust natural barrier to radionuclide migration. Geologic and laboratory characterization data from the Negev Desert are incorporated into multiphase flow and transport models, solved using PFLOTRAN, to aid in site characterization and risk analysis that will support decision-making for waste disposal in an intermediate-depth borehole design. The lithology with the greatest uranium sorption potential at the site is phosphorite. We use modeling to evaluate the ability of this layer to impact uranium transport around a proposed disposal borehole. The current objective of the simulations is focused on characterizing hypothetical leakage from waste canisters and subsequent uranium migration under three infiltration scenarios. Here, we describe a hydrogeologic model based on data from a local exploratory borehole and present results for uranium flow and transport simulations under varying infiltration scenarios. We find that under the current climate conditions, it is likely that uranium will remain in the near-field of the borehole for thousands of years. However, under a hypothesized extreme climate scenario representing an increase in infiltration by a factor of 300x above present-day values, uranium may break through the phosphorite layer and exit the base of the model domain (~200 m above the water table) within 1000 years. Simulation results have direct implications for the planning of nuclear waste disposal in the Negev Desert, and specifically in intermediate-depth boreholes

    Uranium Retardation Capacity of Lithologies from the Negev Desert, Israel—Rock Characterization and Sorption Experiments

    No full text
    A series of batch experiments were performed to assess the uranium sorption capacity of four mineralogically distinct lithologies from the Negev Desert, Israel, to evaluate the suitability of a potential site for subsurface radioactive waste disposal. The rock specimens consisted of an organic-rich phosphorite, a bituminous marl, a chalk, and a sandstone. The sorption data for each lithology were fitted using a general composite surface complexation model (GC SCM) implemented in PHREEQC. Sorption data were also fitted by a non-mechanistic Langmuir sorption isotherm, which can be used as an alternative to the GC SCM to provide a more computationally efficient method for uranium sorption. This is because all the rocks tested have high pH/alkalinity/calcium buffering capacities that restrict groundwater chemistry variations, so that the use of a GC SCM is not advantageous. The mineralogy of the rocks points to several dominant sorption phases for uranyl (UO22+), including apatite, organic carbon, clays, and iron-bearing phases. The surface complexation parameters based on literature values for the minerals identified overestimate the uranium sorption capacities, so that for our application, an empirical approach that makes direct use of the experimental data to estimate mineral-specific sorption parameters appears to be more practical for predicting uranium sorption
    corecore